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ABSTRACT

Surface observations are the main conventional observations for weather forecasts. However, in modern

numerical weather prediction, the use of surface observations, especially those data over complex terrain,

remains a unique challenge. There are fundamental difficulties in assimilating surface observations with three-

dimensional variational data assimilation (3DVAR). In this study, a series of observing system simulation

experiments is performed with the ensemble Kalman filter (EnKF), an advanced data assimilation method to

compare its ability to assimilate surface observations with 3DVAR. Using the advanced research version of the

Weather Research and Forecasting (WRF) model, results from the assimilation of observations at a single

observation station demonstrate that the EnKF can overcome some fundamental limitations that 3DVAR has

in assimilating surface observations over complex terrain. Specifically, through its flow-dependent background

error term, the EnKF produces more realistic analysis increments over complex terrain in general. More

comprehensive comparisons are conducted in a short-range weather forecast using a synoptic case with two

severe weather systems: a frontal system over complex terrain in the western US and a low-level jet system over

the Great Plains. The EnKF is better than 3DVAR for the analysis and forecast of the low-level jet system over

flat terrain. However, over complex terrain, the EnKF clearly performs better than 3DVAR, because it is more

capable of handling surface data in the presence of terrain misrepresentation. In addition, results also suggest

that caution is needed when dealing with errors due to model terrain representation. Data rejection may cause

degraded forecasts because data are sparse over complex terrain. Owing to the use of limited ensemble sizes,

the EnKF analysis is sensitive to the choice of horizontal and vertical localisation scales.

Keywords: data assimilation, ensemble Kalman filter, 3DVAR, complex terrain, short-range weather forecasting,

surface observations

1. Introduction

Surface observations are important for weather forecasts,

but their use in numerical weather prediction (NWP) has

proven difficult. Before NWP became the key tool for

operational weather prediction, surface weather maps

played a dominant role in weather forecasting; forecasters

routinely made predictions using the historical evolution

of surface meteorological fields illustrated by a series of

weather maps. With the rapid development of NWP and

increased computer power during the last half century,

NWP products have replaced weather maps and become

the main guidance for the modern weather forecast. NWP,

however, determines weather forecasts in a different way:

the future atmospheric state is calculated from the current

state by integrating a numerical model. In order to produce

a skilful forecast from NWP, an accurate three-dimensional

initial analysis is required (Gandin, 1963; Kalnay, 2003).

As advanced data assimilation techniques have been devel-

oped (Daley, 1991; Lewis et al., 2006; Evensen, 2007),

various types of data (including satellite data) have been

assimilated into numerical models, leading to significant

improvements in forecasting accuracy.

Despite these advances in data assimilation and

NWP, the use of surface observations remains a challeng-

ing problem. Currently, only a limited number of surface
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observations are used in NWP. In the National Centres

for Environmental Prediction/National Centre for Atmo-

spheric Research (NCEP/NCAR) 50-yr reanalysis (Kalnay

et al., 1996) only surface pressure observations were assimi-

lated. In the North American Regional Reanalysis project

(NARR; Mesinger et al., 2006) only surface pressure, wind

at 10-m height level, and relative humidity at the 2-m

level were assimilated into the model; surface temperature

(usually air temperature at the 2-m height level) was found

to be significantly detrimental to forecasts and was not

assimilated into NARR. Similarly, no 2-m temperature

data were assimilated into the model for the European

Centre for Medium-Range Weather Forecasts (ECMWF)

operational analysis and ECMWF 40-yr reanalysis project

(ERA 40; Simmons et al., 2004). In addition, due to sig-

nificant orography, surface data assimilation becomes a

challenge in NWP and data assimilation applications.

Similar problems were also found in the NCEP opera-

tional regional analysis system (Rogers et al., 2005).

Experiments conducted in the summer of 2003 indicated

that the assimilation of surface temperature observations

over land in the North American Mesoscale (NAM) model

often degraded forecasts. It was determined that the Eta

three-dimensional variational data assimilation (3DVAR)

system, using the step mountain coordinate, had difficulty

in limiting the vertical influence of surface observations.

The problem remains in the latest version of the operational

Non-hydrostatic Mesoscale Model (NMM) core of the

Weather Research and Forecasting (WRF) model. To meet

the needs of weather analysis and forecasting as well as the

verification of the National Digital Forecasting Database

(NDFD), a 2DVAR scheme is used to assimilate surface

observations into a real-time mesoscale analysis (RTMA)

system (DiMego, 2006; De Pondeca et al., 2011) at NCEP.

This system is operated independently from the operational

WRF model. Therefore, except for some selected Mesonet

data that are assimilated into the Rapid Update Cycle

(RUC; Benjamin et al., 2004) and Rapid Refresh (Benjamin

et al., 2011), no Mesonet data are assimilated into other

components of the operational analysis system. Meanwhile,

limited attention has been given to the use of the surface

observations in data assimilation and parameter estimation

(Hacker and Snyder, 2005; Lee et al., 2005; Xie et al.,

2005; Dong et al., 2007; Fujita et al., 2007; Hacker et al.,

2007).

Specifically, considerable difficulty has been encountered

when assimilating surface observations over complex

terrain, as the accuracy of representation of the realistic

terrain in NWP is usually limited by both the horizontal

and vertical resolution of the forecast model. Because

terrain data used in the model must be modified to conform

to the model resolution, the variability of the terrain within

each grid cell influences the overall resolved orographic

and sub-grid scale processes. This causes problems in:

(1) representing the orography in the dynamics and physics

of the numerical model; and (2) assimilating near-surface

data. The latter is referred to as a ‘misrepresentation’

problem and makes the process of quality control and the

assimilation of these data complex and difficult.

These problems in near-surface data assimilation have

also been well recognised for variational data assimilation

methods (e.g. 3DVAR) in operational practice. During the

last decade, ensemble Kalman filter (EnKF) techniques

have been advanced significantly in the research commu-

nity. Previous studies (e.g. Meng and Zhang, 2008a,

2008b) demonstrate that the EnKF outperforms 3DVAR.

However, while all those studies integrate many types of

observation in their data assimilation experiments, none

emphasises the assimilation of surface observations. In

addition, progress has been made in examining the impact

of surface data assimilation on short-range weather fore-

casts. For instance, Stensrud et al. (2009) assimilated sur-

face observations into the WRF model with an EnKF and

found that the analyses reproduced the cold pools beneath

the precipitation system. Ancell et al. (2011) demonstrated

that the WRF EnKF surface analyses and subsequent

short-term forecasts are generally better than forecasts

from the NCEP Global Forecast System (GFS) and NAM.

In addition, Hacker and Snyder (2005) showed that as-

similation of surface observations in a one-dimensional

column model resulted in error reductions throughout

the boundary layer. However, in these studies, little work

has been reported evaluating whether the EnKF over-

comes the existing problems for 3DVAR in surface data

assimilation.

In order to initiate this investigation, in this study, a series

of observing system simulation experiments (OSSEs) is

performed with two data assimilation methods: a 3DVAR,

which is widely applied in current operational practice, and

the EnKF. The purpose of the study is to examine their

respective problems and advantages in assimilating near-

surface observations, not only to understand the funda-

mental problems in assimilating surface observations with

the current 3DVAR method but also to evaluate the ability

of the EnKF to deal with surface observations. Specifically,

we perform OSSEs with idealised settings to investigate the

problems associated with the assimilation of the surface

wind at the 10-m height level (10-mwind hereafter) and temp-

erature at the 2-m height level (2-m temperature hereafter)

into an advanced research version of theWRF (WRFARW)

model. With OSSEs in a short-range forecast, we can isolate

various factors that affect the use of near-surface obser-

vations, thus enhancing our understanding of the major

factors that could limit our ability to assimilate surface data.

The paper is organised as follows: Section 2 briefly

describes the WRF model and its 3DVAR and EnKF
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data assimilation systems. Section 3 briefly introduces the

set up of the OSSEs. Section 4 discusses the experiments

using the assimilation of a single observation over both

flat and complex terrain. Results from both 3DVAR and

the EnKF are compared. Section 5 shows the outcomes

from the assimilation of multiple observations over North

America. Section 6 examines the impact of the misrepre-

sentation of terrain in surface data assimilation. Advan-

tages and disadvantages of 3DVAR and the EnKF are

further discussed. Summary and concluding remarks are

provided in Section 7.

2. Description of the WRF model and data

assimilation systems

2.1. WRF model

The WRF model is a mesoscale community NWP system.

It is designed to serve both operational forecasting and

atmospheric research needs. The WRF model features

multiple dynamic cores. This study employs the advanced

research version of the WRF model (WRF ARW). The

WRF ARW is based on a Eulerian solver for the fully

compressible non-hydrostatic equations, is cast in flux

conservation form, and uses a mass (hydrostatic pressure)

vertical coordinate. The solver uses a third-order Runge-

Kutta time integration scheme coupled with a split-explicit

second-order time integration scheme for the acoustic and

gravity-wave modes. Fifth-order upwind-biased advection

operators are used in the fully conservative flux diver-

gence integration; second- to sixth-order schemes are run-

time selectable. The WRF ARW carries multiple physical

options for cumulus, microphysics, planetary boundary

layer (PBL), and radiation physical processes. Details of

the model are provided in Skamarock et al. (2008).

2.2. WRF 3DVAR

Along with the WRF ARW, a 3DVAR system was

developed based on the NCAR/Penn State University

Mesoscale Model Version 5 (MM5) 3DVAR system

(Barker et al., 2004a, 2004b). The 3DVAR system provides

an analysis xa via the minimisation of a prescribed cost

function J(x),

JðxÞ ¼ Jb þ Jo

¼ 1

2
ðx� xbÞT B�1ðx� xbÞ

þ 1

2

Xn

i¼1

ðyi � yo
i Þ

T
O�1

i ðyi � yo
i Þ

(1)

Commonly, in eq. (1), the analysis x �xa represents an

a posteriori maximum likelihood (minimum variance)

estimate of the true state of the atmosphere given two

sources of data: the background (previous forecast) xb

and observations yo (Lorenc, 1986). The analysis fit to

these data is weighted by estimates of their errors: B and

O are the background and observational error covariance

matrices, respectively; y �H(x), and H is a linear or

non-linear operator used to transform the gridpoint state x

to estimated observations; i denotes each type of observa-

tional data and n represents the total number of data

types.

The configuration of the WRF 3DVAR system is based

on a multivariate incremental formulation (Courtier et al.,

1994). The preconditioned control variables are stream

function, unbalanced velocity potential, unbalanced tem-

perature, unbalanced surface pressure, and pseudo- relative

humidity. With WRF 3DVAR, users have an option to

generate the background error covariance term (B matrix)

to achieve consistency between the background error term

and the model resolution.

In this study, statistics of the differences between daily

24-hour and 12-hour forecasts valid at 0000 UTC and 1200

UTC for 1 month (June 2008) are paired (i.e. a total of 60

samples) and used to estimate background error covariance

with the so-called NMC (National Meteorological Centre,

now known as NCEP) method (Parrish and Derber, 1992;

Wu et al., 2002; Barker et al., 2004a, 2004b). Specific steps

to generate the background error term include the follow-

ing: (1) convert the WRF forecast variables to precondi-

tioned control variables and then remove the mean for each

variable and each model level; (2) calculate ‘unbalanced’

control variables and conduct regression analysis to

determine multivariate correlations between perturbation

fields; (3) project the perturbations from model levels onto

a climatologically averaged (in time, longitude and latitude)

eigenvector using empirical orthogonal functions (EOFs),

thus obtaining the vertical component of the background

error covariance; and (4) perform linear regression of

the horizontal correlations to calculate recursive filter

length-scale.

The background error covariance matrix (B matrix)

plays an important role in a 3DVAR system. It influences

the analysis fit to the observations and also defines the

domain of influence of observations. Horizontally the

background error correlations are assumed to be a

Gaussian function:

BðrÞ ¼ Bð0Þexpð� r2

s2
Þ (2)

where r is the distance between the model grid point

and the observation location; s is the length-scale of the

Gaussian function that determines how far the observation

information can be spread spatially. B(0) is the back-

ground error covariance at the observation location and
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B(r) is the background error covariance at the model grid

point at a distance r away from the observation location.

The observational information is spread using a recursive

filter (Wu et al., 2002; Baker et al., 2004b), while the

vertical relation is represented by applying the empirical

orthogonal decomposition technique. Since the back-

ground error covariance in 3DVAR is generated by mean

statistics, it is constant throughout the data assimilation

experiment.

2.3. Ensemble Kalman filter for WRF

The EnKF is a different way of performing data assimila-

tion. Specifically, in the 3DVAR method, the minimisation

of (1) requires a prior estimate of the background error

covariance B. In the EnKF, the analysis is achieved

by xa�xf�K[yo�H(xf)] with a Kalman gain matrix

K�PfHT(HPTHT�R)�1 where Pf is the sample back-

ground error covariance and is estimated using an ensemble

of k forecasts x
f
kðtiÞ (Evensen, 1994).

Pf � 1

K � 1

XK

k¼1

ðxf
k � xf Þðxf

k � xf ÞT (3)

where the overbar represents the ensemble average. As

ensemble forecasts are used in generating the background

error term, the background error covariance in the EnKF is

flow-dependent.

Research on the EnKF started with Evensen (1994) and

Houtekamer and Mitchell (1998). Their methods can be

classified as the EnKF with perturbed observations. An-

other type of EnKF is a class of deterministic square root

filters (Anderson, 2001; Bishop et al., 2001; Whitaker and

Hamill, 2002), which consists of a single analysis based on

the ensemble mean, and in which the analysis perturbations

are obtained from the square root of the Kalman filter

analysis error covariance. Tippett et al. (2003) described

serial implementations of the square root filters and argued

the square root filter increases efficiency by avoiding the

inversion of large matrices.

A WRF ensemble data assimilation system has been

developed at NCAR since 2003 (www.image.ucar.edu/

DAReS/; Chen and Snyder, 2007; Anderson et al., 2009;

Torn, 2010) with the WRF ARW model and the Data

Assimilation Research Testbed (DART/WRF) ensemble

adjustment Kalman filter (EAKF; Anderson, 2001, 2003;

Anderson et al., 2009). The EAKF uses observations to

update the WRF ARW model state (analysis) variables

including wind components, temperature, mixing ratio

of water vapour, cloud liquid water, rain, ice and snow,

surface pressure, geopotential height, and column mass of

dry air. The assimilation of any type of observation can

produce increments for all of the analysis variables through

the forecast (prior state) ensemble sample covariance

(Anderson et al., 2009).

Small ensemble size and model errors affect the perfor-

mance of the EnKF. Thus, localisation and covariance

inflation are commonly used in many applications. Speci-

fically, sampling errors are present due to the use of small

ensemble size to reduce the computational cost. Spuriously

large error covariance estimates between a state variable

and a remote observation can be produced by using a small

ensemble. Spatial localisation is a practical strategy that

eliminates the impact of observations beyond a cut-off

distance (Houtekamer and Mitchell, 1998; Hamill et al.,

2001; Anderson, 2012). It has been demonstrated that

localisation can mitigate the spurious correlations to some

degrees (Houtekamer and Mitchell, 1998, 2001; Hamill

et al., 2001; Hacker et al., 2007). Covariance inflation

increases the prior ensemble estimates of the state variance

and can reduce the impact of model error and avoid

filter divergence (Anderson, 2007; Miyoshi, 2011; Buehner,

2012). In particular, DART/WRF uses a hierarchical

Bayesian approach (Anderson, 2007), in which covariance

inflation values are adaptively estimated and can vary

temporally and spatially.

3. Observing system simulation experiments

To simplify the complexities of near-surface data assimila-

tion and also examine the key factors that affect it, OSSEs

are used in this study, rather than real data assimilation

experiments.

A time period of 0000 UTC to 1200 UTC 5 June 2008

is chosen arbitrarily for a case study. During this period,

a cold front system was passing over the western US

(complex terrain) and its eastern extension was a stationary

front. It was moving south-eastward and its eastern part

was approaching the Great Plains. Under the influence of

the front, a low-level jet (LLJ) system was evolving over the

Great Plains. For OSSEs, the nature run (i.e. the ‘truth’)

is generated by integrating the WRF ARW model for a

12-hour period, initialised by the NCEP NAM analysis at

0000 UTC 5 June 2008. Fig. 1a shows the weather map of

0000 UTC 5 June 2008 from the nature run. The cold front

and LLJ are clearly revealed at this time.

In order to account for the initial and boundary errors,

the control run is randomly chosen to begin with a 6-hour

forecast valid at 0000 UTC made during the first week

(1�7) of June 2008 (e.g. 1 June 2008, which eliminates

errors in the diurnal variation but still produce enough

differences between the ‘control run’ and the ‘truth’),

initialised by the NCEP GFS Final (FNL) analysis at

1�1 degree resolution. As shown in Fig. 1b, the control

run completely misses the cold front and LLJ systems. The

differences between the initial conditions of the ‘nature run’
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and ‘control run’ are sufficient to demonstrate the effect of

the data assimilation.

Considering the extent of model errors compared to the

real world, different physical parameterisations are used

for the nature run and control run. Specifically, model

physics options used in the nature run include the Yonsei

University (YSU) planetary boundary layer scheme, the

thermal diffusion land surface scheme, the Lin microphy-

sical scheme, the Kain-Fritsh cumulus parameterisation,

the long-wave Rapid Radiative Transfer Model (RRTM)

and the Dudhia short-wave parameterisation model (see

details in Skamarock et al., 2008). In the control run, the

Mellor�Yamada�Janjic (MYJ) planetary boundary layer

scheme, the Noah land surface model as well as the WRF

single-moment 6-class microphysics (WSM6) scheme are

used while other physics are the same as those used in the

nature run.

Model terrain is the same in the nature run and control

run in most of the following numerical experiments except

for a set of experiments discussed in Section 5 that examine

the effect of the terrain misrepresentation. Model horizon-

tal resolution (grid spacing) is set at 27 km, which includes

135 and 195 grid points in south-north and west-east

direction, respectively. The model vertical structure con-

sists of 36 h levels in a terrain-following hydrostatic-

pressure coordinate with the top of the model set at

50 hPa, where h�(Ph�Pht)/(Phs�Pht). While ph is the

hydrostatic component of the pressure, phs and pht refer to

pressure values along the surface and top boundaries,

respectively. The h levels are placed close together in the

low-levels (below 500hPa) and are relatively coarsely

spaced above.

For the experiments with both the EnKF and 3DVAR,

simulated hourly surface observations are generated by

interpolating the nature run data to the surface station

locations (as shown in Fig. 2) with unbiased random

errors, which are not larger than the statistics of observa-

tional errors. Consistent with the statistics of a large

sample of the data and Hacker and Snyder (2005), the

observational variances are specified as 1.0 K2 and 2.0 m2

s�2 for 2-m temperature and 10-m wind, respectively.

For the data assimilation experiments, 2-m temperature

and/or 10-m winds are assimilated into the WRF ARW

model.

In the experiments with the EnKF, 32 ensemble members

are used. Ensemble initial perturbations are obtained by

so-called fixed covariance perturbations (FCPs; Torn

et al., 2006) 6 hours prior to the data assimilation.

In FCPs, ensemble perturbations are derived by drawing

random perturbations from the 3DVAR system, which are

scaled by 1.5. All members are then spun-up by running

forward for 6 hours until the observations are available

at the beginning of the data assimilation. Since 3DVAR

experiments commonly use 6-hour forecast as a first guess

for the data assimilation experiment, we choose a short

50N

(a)

(b)

40N

30N

50N

40N

30N

125W 110W 95W 80W

15

15

10

5

10

5

125W 110W 95W 80W

Fig. 1. Synoptic maps at 0000 UTC 05 June 2008 for nature

run (a) and control run (b). The wind barbs denote the wind fields

at 50 m AGL. Shaded contour represents the wind speeds. The

contours show the temperature at 700 hPa pressure level (28C
interval). The thick black line denotes the cold front. The large box

denotes the key front region, that is, used for calculations in

Figs. 12, 17, 19 and 20. The small box denotes the key LLJ region

used for the calculation in Fig. 12.

50N

40N

30N

125W

500 1000 1500 2000 2500 3000

110W 95W 80W

Fig. 2. Distribution of surface observation stations (plus signs)

and terrain heights (shaded contour; unit: m). The two solid

dots denote the locations of the two stations in single station

experiments.
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ensemble spin-up period in the EnKF to ensure a fair

comparison.

4. Results from assimilating observation(s) from

a single station

In order to examine the influence of observations and

the impact of different background terms from 3DVAR

and the EnKF on surface data assimilation, experiments

are first conducted by assimilating observation(s) from a

single observation station. To compare the performance

of 3DVAR and the EnKF over flat and complex terrain,

one observation station over mountainous terrain (41.048N,

112.988W) and one station over flat terrain (38.08N,

85.08W) are selected for various experiments. All single

station assimilations are conducted at 0000 UTC 5 June

2008.

4.1. 3DVAR

Figure 3 shows the 3DVAR analysis increments of temp-

erature and u and v wind components at the lowest model

level over the mountainous area by assimilating tempera-

ture only, wind (u and v components) only and both

temperature and wind. Apparently, the analysis increments

show mainly large-scale features and spread over the

mountainous regions. Figure 4 illustrates the analysis incre-

ments over flat terrain at the lowest model level. Except for

the differences in the increment shapes due to the sign of the

innovation vector over the observation point (O-B), the

major features of the analysis increments are similar to

those over complex terrain (Fig. 3). Note that the analysis

increments of u (or v) wind component from assimilat-

ing temperature only are much smaller than those from

assimilating u and v components only. Therefore, Figs. 3e,

3h, 4e, and 4h are similar to 3f, 3i, 4f, and 4i, respectively.

45N

35N

45N

35N

45N

35N

120W 110W

1800 2200 2600

100W 120W 110W 100W 120W 110W 100W

Fig. 3. The 3DVAR analysis increments of temperature (K; top row), u-component (m s�1; middle row) and v-component (m s�1;

bottom row) of wind at the lowest model level with assimilation of 2-m temperature (left column), 10-m winds (middle column) and both

2-m temperature and 10-m winds (right column) from a single observation station over complex terrain. The shaded contours show the

terrain heights (unit: m). ‘� ’ denotes the location of the observation station.
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Figure 5 illustrates the correlation and cross-correlation

functions for multivariate optimal interpolation analysis

derived using the geostrophic increment assumption � after

Gustafsson (1981) and Kalnay (2003). It demonstrates the

response of the analysis increment from one variable (e.g. a

geopotential or thermodynamic variable such as tempera-

ture) to another variable (e.g. u- and v-wind components), or

vice versa. Comparing Figs. 3 and 4with Fig. 5, it is apparent

that the shapes of the analysis increments from 3DVARover

both mountainous and flat terrain follow classical correla-

tion and cross-correlation functions of variables using the

geostrophic increment assumption. If we count the changes

of contour shapes due to the linear combination of the

variables (i.e. Figs. 3e and 4e corresponding to the sum of

Fig. 5e and 5f and so on), the shapes of the analysis

increments revealed by Figs. 3 and 4 are equivalent to those

structures in Fig. 5, showing the strong dependence of the

3DVAR analysis increments on the prescribed correlation

functions in the background error covariance term.

In addition, as shown in Fig. 3, the 3DVAR analysis

increments from the observation station within the moun-

tain valley area have been spread across the mountains.

Since it is expected that the air temperature and wind

conditions can be inhomogeneous over the mountain valley

and cross-mountain areas, the cross-mountain analysis

increments could be unrealistic. This feature of the cross-

mountain analysis increment can be revealed even more

clearly (although it is similar to Fig. 3) if we check the

analysis increments at the 800 hPa pressure level (near the

surface over the US IntermountainWest; figure not shown).

In 3DVAR, the influence of a single observation on its

surrounding area is determined by a horizontal correlation

length-scale in the background error term [eq. (2)]. Fig. 6

shows the analysis increments of temperature at the

model’s lowest level from the assimilation of both 2-m

temperature and 10-m wind with various background

correlation length-scales. A simple sensitivity experiment

indicates that a very small length-scale (25% of the default

45N

35N

45N

35N

45N

35N

100W 90W 80W 100W

600 1000 1400

90W 80W 100W 90W 80W

Fig. 4. Same as Fig. 3, except over flat terrain.
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value that was specified in the NMC method when gener-

ating the B term for this study) is needed in order to avoid

unrealistic cross-mountain analysis increments. However,

with such a small length-scale, the analysis increment

and the influence of the single observation could be

minimised. Therefore, it is not realistic to use a very small

length-scale. Meanwhile, since a relatively large length-

scale has to be used, the 3DVAR method typically can

have problems in assimilating data over complex terrain.

Therefore, the length-scale is an influencing factor that

could impose significant impact on the near-surface data

assimilation with 3DVAR in the regions of complex

terrain.

4.2. Ensemble Kalman filter

With the EnKF, the analysis increments resulted from

observations at a single observational station over

Fig. 5. Schematic illustration of the correlation and cross-correlation functions for multivariate OI analysis derived using the geostrophic

increment assumption (courtesy Gustafsson 1981 and Kalnay 2003). ‘f’ is thermodynamic variable related to the temperature. u and v

denote the horizontal components of wind.
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120W 110W

25% 150%

100W 120W

1800 2200 2600

default

110W 100W 120W 110W 100W

Fig. 6. The 3DVAR analysis increments of temperature (K) with assimilation of both 2-m temperature and 10-m winds from a single

observational station over complex terrain using different horizontal correlation length-scales: a default value (middle), 25% of the default

value (left) and 150% of the default value (right). The shaded contour shows the terrain heights (m).
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mountainous and flat terrain are shown in Figs. 7 and 8

(corresponding to Figs. 3 and 4 for 3DVAR), respectively.

Compared with Figs. 3 and 4, the analysis increments from

the EnKF are much more localised. They also have less

correspondence with the correlation functions shown

in Fig. 5. Since the EnKF defines the background error

covariances using ensemble forecasts, Fig. 9 shows ensem-

ble spreads of temperature, and u- and v- wind components

over the area surrounding the observational station. The

shapes and structures (in terms of magnitudes and gradi-

ents of the increment contour lines) of the analysis

increments of temperature and u and v wind components

from the EnKF correspond well to their ensemble spreads.

Specifically, large analysis increments agree well with the

large ensemble spread.

More importantly, with the EnKF, over complex terrain

the analysis increments resulting from the assimilation of

observations in the valley remain inside the valley, unlike

those with 3DVAR. No cross-mountain analysis increment

is found (Fig. 7). In addition, similar to Fig. 3e and 3f (3h

and 3i), Fig. 7e and 7f (7h and 7i) are very similar.

The spatial range of influence from an observation in the

EnKF can be limited by the specification of the horizontal

localisation scale. The sensitivity of analysis increments

to the horizontal localisation radius has been tested. It is

found that analysis results are sensitive to the horizontal

localisation radius (Fig. 10). However, in the EnKF, even

with a large localisation radius (Fig. 10c), the analysis

increments from the valley station spread widely through

the surrounding area but still remain mostly inside the

valley.

Overall, the major differences between the above experi-

ments with 3DVAR and the EnKF can be attributed to

differences in their background error terms. Since 3DVAR

uses a fixed background term, analysis increments from

a single observation tend to be similar in various cases,

as they depend heavily on the prescribed correlation

functions. The EnKF’s flow-dependent background term

45N

35N

45N

35N

45N

35N

120W 110W 100W 120W

1800 2200 2600

110W 100W 120W 110W 100W

Fig. 7. Same as Fig. 3, except for the EnKF analysis increments. The half radius of the horizontal localization used in the experiments is

320km. No vertical localization is applied.
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enables the observations to have a greater influence on the

areas where the ensemble spreads are larger. Figure 11a

shows structures of the estimated background error stan-

dard deviation of the streamfunction in 3DVAR (static)

and the EnKF averaged over the entire data assimilation

period. In 3DVAR, the error variance is homogeneous

in each statistical bin and has no correlation with terrain

and the synoptic situation. In contrast, error variances

in the EnKF reflect the structure of the synoptic system.

As shown in Fig. 11b, large variances align well with the

45N

35N

45N

35N

45N

35N

100W 90W 80W 100W

600 1000 1400

90W 80W 100W 90W 80W

Fig. 8. Same as Fig. 7, except over flat terrain.
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Fig. 9. Ensemble spread (shaded) and analysis increments (contour) for temperature (a; 0.1 K interval), u-component (b; 0.2 m s�1

interval) and v-component (c; 0.2 m s�1 interval) with assimilation of both 2-m temperature and 10-m wind using EnKF. The ‘� ’ sign

denotes the observational location.
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LLJ, indicating the flow-dependent nature of the EnKF

background term.

5. Experiments with multiple observations

The above results from assimilating observations from a

single station show potential advantages of the EnKF over

3DVAR in assimilating near-surface observations. It is

interesting to further explore whether the EnKF outper-

forms 3DVAR in short-range weather forecasting if only

surface observations are assimilated. Surface observations

have high spatial and temporal resolution and are among

the most widespread observations of the lower atmosphere.

Therefore, we perform experiments, in which the ob-

servations from multiple stations (Fig. 2) are assimilated to

examine and compare the ability of both 3DVAR and the

EnKF to extend the information from single-level surface

observations to the atmospheric boundary layer as well

as to assess the impact on the short-range forecast. For

experiments with both 3DVAR and EnKF, the data

assimilation is performed for the period of 0000 UTC to

0600 UTC 5 June 2008, assimilating 2-m temperature and

10-m wind in a total of seven hourly data assimilation

cycles. Then, 6-hour forecasts follow the data assimilation.

Sensitivity experiments are first conducted to determine

the optimal length-scale for 3DVAR, and vertical and

horizontal localisation scales for the EnKF. It is found

that the default value of the length-scale, as defined by the

NMC method, performs best for the 3DVAR method in

terms of obtaining minimum root-mean-square errors for

both analyses and forecasts. Three sets of experiments with

various radii of maximum vertical localisation (i.e. 1000 m,

3000 m, 5000 m) for the EnKF are performed. Figure 12

shows the time-height root-mean-square errors of wind

speed and temperature (against the nature run) over key

LLJ and frontal regions. The 3000-m radius of maximum

vertical localisation produces the best analysis/forecast.

Similar sensitivity experiments are also conducted to deter-

mine the optimal horizontal localisation scale. Among

several tested options (e.g. 120 km, 240 km, 360 km), a

half-radius of the maximum horizontal localisation of

240 km is selected.

Based on the aforementioned sensitivity experiments,

optimal results from 3DVAR and the EnKF are further

discussed to compare their relative performance.

Figure 13 shows the wind direction and wind speed at

50 m AGL and temperature at 700 hPa at 0000 UTC 5 June

45N

20% default 200%

35N

120W 110W 100W

1800 2200 2600

120W 110W 100W 120W 110W 100W

Fig. 10. Same as Fig. 6, except for EnKF with different radii of horizontal localization. The default value of half radius of the horizontal

localization is 320 km (middle). The smaller (left) and larger (right) scales are 20% and 200% of the default value, respectively.
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Fig. 11. Estimated background error standard deviation of the

streamfunction (shaded contour; unit: 105 m2 s�1) in 3DVAR

(a, static in time) and EnKF [b, averaged over the data assimilation

period (0000 UTC to 0600 UTC 5 June 2008)] near 800 m AGL.

Contour lines denote the terrain heights (interval: 500m).
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2008 after the first cycle of data assimilation with 3DVAR

and EnKF. Compared with the corresponding fields in the

nature run and control run (Fig. 1), the 3DVAR repro-

duced the LLJ system over the Great Plains but missed

the cold frontal system over complex terrain. The EnKF,

however, reproduced most parts of the cold front. The LLJ

system is also well reproduced.

At the end of the data assimilation cycle, namely, at 0600

UTC 5 June 2008 (Fig. 14), 3DVAR results show only part

of the frontal system, while sharing almost the full range of
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Fig. 12. Time-height root-mean-square errors (against the nature run) of temperature (K; left column) averaged over a key front

region and wind speed (m s�1; right column) averaged over a key LLJ region, for EnKF experiments with various maximum radii of

vertical localization scales: 1000m (a and b), 3000m (c and d), 5000m (e and f). The key frontal region and the key LLJ region are marked

in Fig. 1b.
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the LLJ but with weaker intensity in terms of wind speed.

The EnKF captured the whole frontal system and more

accurate intensity in terms of wind speed magnitude and

the area of coverage of the LLJ. Overall, the EnKF per-

formed better for both the LLJ and cold front cases.

Further evaluations are conducted for the LLJ and cold

front systems as follows.

5.1. Low-level jet system over the Great Plains

We first evaluate the representation of the LLJ over the

Great Plains during the data assimilation and forecast

periods. Following Whiteman et al. (1997), the definition

of the LLJ is when maximum wind speed reaches 12 ms�1,

with a fall-off value greater than 6ms�1 from thewind speed

maximum upward to the next wind speed minimum at or

below the 3000 m level. With the assimilation of surface

observations, both 3DVAR and the EnKF are able to repro-

duce theLLJ system in theWRFmodel (e.g. Figs. 13 and 14).

Figure 15 compares the wind profiles averaged over the

key region of the LLJ from different experiments for 0000

UTC (beginning of the data assimilation cycle), 0600 UTC

(end of the data assimilation cycle) and 1200 UTC (end

of the forecast). It shows that both 3DVAR and EnKF

resulted in an improved analysis and forecast of the LLJ,

compared with the control run. Specifically, at the begin-

ning of the data assimilation (0000 UTC), the EnKF results

are clearly better than 3DVAR in terms of representing the

magnitude of the mean wind speed, especially for the low

level (up to a height of 1000 m). At the end of the data

assimilation cycle (0600 UTC); both 3DVAR and the EnKF

result in mean wind speeds that are close to the nature

run at heights below 500 m. However, the maximum mean

wind speed height is near 500 m in 3DVAR, while it is

higher than 500m in both the EnKF and the nature run.

After the 6-hour forecast (1200 UTC), results in 3DVAR

and the EnKF are still closer to the nature run than those

in the control run. Compared with 3DVAR, the EnKF
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Fig. 13. Same as Fig. 1, except for the 3DVAR (a) and EnKF (b) analysis after the first data assimilation cycle.
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analysis leads to a better forecast in terms of the vertical

structure of the mean wind speed and the height of the

maximum wind speed over the LLJ area.

5.2. A cold front over complex terrain

A cold front is passing over the Intermountain West

(complex terrain) during the study period. Figure 16 shows

the time-latitude cross-section of temperature averaged

over the main frontal area (68 longitude ranging from

1148W to 1088W) at 500 m AGL. In contrast to the nature

run, the control run missed the major cold front. With

both 3DVAR and EnKF, the frontal system is reproduced

although the temperature over the frontal region in both

the 3DVAR and EnKF experiments is higher than that

in the nature run. However, compared with 3DVAR, the
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Fig. 14. Same as Fig. 1, except for 0600 UTC 05 June 2008 for nature run (a), control run (b), 3DVAR analysis (c), and EnKF

analysis (d).
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Fig. 15. Vertical profiles of mean wind speed (m s�1) over the key regions of LLJ. Over a box of (328N�388N; 1038W�978W) after the

first data assimilation cycle at 0000 UTC 5 June 2008 (a), (288N�388N; 1038W�958W) at the end of data assimilation cycle at 0600 UTC 5

June 2008 (b), and (328N�408N; 1058W�958W) after 6 h forecast at 1200 UTC 5 June 2008 (c).
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temperature in the EnKF experiment is closer to that in

the nature run over the frontal area.

To further compare the 3DVAR and EnKF experiments

during the analysis and forecast period, Fig. 17 illustrates

the differences in the root-mean-square errors (data assimi-

lation experiments against the nature run) between the

EnKF and 3DVAR for both the temperature and wind

fields (the negative numbers indicate that the analysis or

forecast errors in the EnKF are less than those in 3DVAR).

Here, the root-mean-square errors are calculated over all

observation stations in the key frontal region over a box of

[208N�458N; 1208W�1008W]. The figure clearly reveals

that the EnKF performs better than 3DVAR at all height

levels in both the analysis and forecast periods.

6. The impact of terrain representation on

surface data assimilation

Terrain mismatch � namely, the discrepancy between model

and realistic terrain heights � is common in numerical

models over complex terrain due to the limitation of model

resolution in resolving detailed terrain features. In order to

test the impact of this type of terrain mismatch on surface

data assimilation, we perform an additional set of experi-

ments, in which terrain heights are perturbed by using

coarser resolution terrain (2-degree vs. 10-minute resolu-

tion) in the control and data assimilation experiments.

In addition, a common way to deal with the terrain mis-

representation is to reject the data over the area where
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Fig. 16. Time-latitude cross-section of temperature averaged over the main front zone in 68 longitude ranging from 1148W to 1088W at

500 m AGL for nature run (a), control run (b), 3DVAR analysis (c), and EnKF analysis (d). The dashed bold lines denote the cold front.
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discrepancies between the model and realistic terrain are

large. Therefore, another set of experiments is conducted, in

which we reject the data when terrain differences between

the experiments and nature run are greater than 25 m.

Figure 18 shows the stations where the surface data are

rejected in data assimilation. Since observations at many

stations are rejected in mountainous region as seen in Fig.

18, the length scale in 3DVAR and the horizontal localisa-

tion scale in EnKF need to be adjusted to adapt to changes

of the density of observations being assimilated. Sensitivity

experiments are conducted with increased length scales in

3DVAR and localisation scales in EnKF to determine the

new optimal scales. By comparing the RMS errors from

these sensitivity experiments, the length (localisation) scale

that produced the smallest RMS errors in 3DVAR (EnKF)

is chosen as a new optimal scale to produce data assimila-

tion results for further comparison.

Figure 19 illustrates results from the EnKF. Compared

with the RMS errors of temperature and wind in the

boundary layer over the key frontal region (complex

terrain) in the original (default) experiment (as mentioned

in Section 5, without perturbing the terrain heights and

data rejection; Fig. 19a and b), the EnKF analysis and

subsequent forecasts with perturbed terrain heights achieve

very similar accuracy, as the discrepancies in RMS errors

between two experiments (Fig. 19c and d) are almost

negligible. This result indicates that the EnKF has a good

ability to handle the terrain mismatch. However, when

the data are rejected over the areas of terrain mismatch,

the data assimilation and forecast results are degraded

(Fig. 19e and f). Since there are fewer observation stations

over complex terrain in the western US than in the eastern

US, the degraded analysis and forecast here can be

attributed to the lack of data over complex terrain.

Outcomes from the 3DVAR experiments show that the

data assimilation results were degraded under mismatched

terrain, compared with the results before perturbing the

terrain (figure not shown), indicating that 3DVAR has

less ability to handle the mismatched terrain than the

EnKF does. In addition, under the data rejection case,

3DVAR results are even worse than those from the EnKF

(Fig. 20).

7. Concluding remarks

Although surface observations are the main source of

conventional observations and have been very important

for weather forecasting, their use in modern NWP,

especially over complex terrain, remains a unique chal-

lenge. In this study, a series of OSSEs is performed with

two popular data assimilation methods, a 3DVAR and an

EnKF. The problems and advantages of both methods in

assimilating near-surface observations are examined.
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Even with a single case study, results from this study

reproduce many details that explain the differences between

the 3DVAR and the EnKF in the context of surface data

assimilation. Results from the assimilation of surface 2-m

temperature and 10-m wind from a single observation

station demonstrate that there are fundamental problems

in assimilating surface observations over complex terrain

using 3DVAR. Specifically, the analysis increments from a

valley station can unrealistically spread over the mountain

areas even with a reasonable specification of the horizontal
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Fig. 19. Time-height root-mean-square (RMS) errors (against the nature run) of temperature (K; left column) and wind speed (m s�1;
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background length-scale. The EnKF can overcome some of

these limitations through its flow-dependent background

error term. Overall, major discrepancies between 3DVAR

and the EnKF in the single observation influence can

be attributed to their different ways of defining the back-

ground error term. Since 3DVAR uses a fixed background

term, analysis increments from a single observation tend

to be similar in various cases as they depend heavily on

the prescribed correlation functions. Owing to its flow-

dependent background error covariance term, the EnKF

enables observations to have more influence on areas

where the ensemble spreads are larger. In addition, due

to sampling errors with limited ensemble size, data

assimilation results from the EnKF are sensitive to the

choice of the horizontal and vertical localisation scales.

More comprehensive comparisons are conducted using a

synoptic case with two severe weather systems: a front over

complex terrain in the western US and a low-level jet over

the Great Plains. It is found that both 3DVAR and the

EnKF are capable of extending information from surface

observations to the atmospheric boundary layer. Over

flat terrain, the EnKF does better in terms of the analysis

and forecast of the low-level jet system while the 3DVAR

also simulates the low-level jet system generally well.

Over complex terrain, the EnKF performs much better

than 3DVAR in general. Specifically, the EnKF has a

better ability to handle surface data under terrain mis-

representation. Since a common way to deal with terrain

misrepresentation is to reject data over the area where

discrepancies between the model and the actual terrain

are large, a data-rejection experiment is performed. How-

ever, since data are sparse over complex terrain, data

rejection results in degraded analyses and forecasts, sug-

gesting that this may not be the best solution for dealing

with errors due to model terrain representation.

It should be noted that the OSSEs performed in this

paper are in idealised settings in order to isolate various

factors that affect the assimilation of near-surface observa-

tions. In addition, the terrain data used in OSSEs are

all from model terrain, which is much smoother than

the actual terrain. Therefore, while the results in this study

can help us understand what factors limit our ability

to assimilate surface data, the real data assimilation and

prediction problems are expected to be more complicated.

Future work will further investigate the problems and

challenges in assimilating surface observations over com-

plex terrain with real observations and realistic terrain

with many cases. Additional experiments will also be

performed at high-resolution in nested domains, as sig-

nificant surface analysis and forecast improvements

are found when the EnKF grid spacing is reduced (e.g.

Ancell et al., 2011).

In addition, hybrid 3DVAR and EnKF data assimilation

schemes (e.g. Hamill and Snyder, 2000; Wang et al., 2008)

have been developed in both research and operational

communities. There are hopes that these hybrid data as-

similation systems could overcome some deficiencies of the

3DVAR method. Meanwhile, a four-dimensional varia-

tional data assimilation (4DVAR) method is also widely

used for operational prediction. Future work will evaluate

the ability of the hybrid data assimilation systems and

4DVAR in assimilating near-surface observations.

Furthermore, model errors from land-atmosphere ther-

mal coupling could be another issue in near-surface data

assimilation. In a recent study with a single column model,

Hacker and Angevine (2012) suggest that the parameter-

isation error that accounts for the inaccurate representa-

tion of thermal coupling between land and atmosphere

is difficult to estimate. They also pointed out that soil

and flux measurements have large impacts on near surface

variables. Therefore, future studies should also pay atten-

tion to the role of model errors in near-surface data

assimilation.
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