Progress with the WRF-IBM model

Tina Katopodes Chow¹, Bobby Arthur¹, Alex Anderson-Connolly¹, Jingyi Bao¹, David Wiersema¹, Katherine A. Lundquist², Jeff Mirocha² ¹Civil and Environmental Engineering University of California, Berkeley ²Lawrence Livermore National Laboratory

Goal: LES over complex terrain

WRF-IBM

Long and winding road

Road map

- WRF-IBM for complex terrain
- Implementing the log law
- Current/future work

WRF to WRF-IBM - seamless grid nesting

Weather and Research Forecasting (WRF) model

- Mesoscale to microscale
- One tool for all scales
 - Improved turbulence models for LES
 - Immersed boundary method (IBM) for steep terrain

Immersed boundary method

Granite Mountain, Utah

Increasing resolution \implies steeper slopes

Terrain slope limit

Terrain-following coordinates

- Horizontal pressure gradient errors
 - 45° limit, usually ~30° starts causing problems (e.g. Mahrer 1984)
- Grid aspect ratio limitations
- Numerical stability

Ghost-cell immersed boundary method

Complex terrain applications

- Current implementation for no-slip
 - Good for urban environments at ~1 m resolution

IBM-WRF for Oklahoma City

Need log law wall stress for complex terrain

$$U = \frac{u_*}{\kappa} \ln\left(\frac{z+z_0}{z_0}\right) \qquad C_D = \left[\frac{1}{\kappa} \ln\left(\frac{z_1+z_0}{z_0}\right)\right]^{-2}$$

$$\tau_{wall} = -u_*^2 = -C_D |U_1| |U_1|$$

WRF implementation of log law

Momentum equation in U direction

$$\frac{\partial U}{\partial t} + U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial y} + W\frac{\partial U}{\partial z} = -\frac{1}{\rho}\frac{\partial P}{\partial x} - \left(\frac{\partial \tau_{11}}{\partial x} + \frac{\partial \tau_{12}}{\partial y} + \frac{\partial \tau_{13}}{\partial z}\right)$$

\square Requires gradient in τ_{13}

WRF implementation of log law

WRF-IBM log law - testing

Log law + WRF-IBM

Chester et al. 2007

It's all in the details

S. Chester et al. | Journal of Computational Physics 225 (2007) 427-448

Velocity gradient based IBM

 Reconstruct velocity at ghost cell based on wall stress

$$\begin{aligned} \tau_{wall} &= -\nu_t \frac{\delta u}{\delta z} \\ \frac{\delta u}{\delta z} &= -\frac{\tau_{wall}}{\nu_{t(wall)}} \end{aligned}$$

$$\begin{aligned} \tau_{wall_{xz}} &= -\frac{k}{\ln \frac{z_1}{z_0}}^2 \left| U \right| U \\ \tau_{wall_{yz}} &= -\frac{k}{\ln \frac{z_1}{z_0}}^2 \left| U \right| V \end{aligned}$$

What's the eddy viscosity at the wall?

• Prandtl's mixing length u_*kz

- Agrees with log law at wall
- Very small values near the wall
- But WRF uses other eddy viscosity models even at the wall
 - E.g. Smagorinsky
 - Much larger than $\nu_{t(wall)}$ from Prandtl's model
- Large near-wall gradients and does not agree with standard WRF results
- **Consider 3 new ways to estimate** $\nu_{t(wall)}$

Estimating eddy viscosity at the wall

□ Smagorinsky closure $\nu_{t(g)} = \nu_{t(1)} = \nu_{t(wall)}$

- Set equal to value above
- Mason and Thompson 1992
 - Blending of length scales

$$\frac{1}{(l^*)^2} = -\frac{1}{(c_s \triangle)^2} + \frac{1}{(\kappa z)^2} \qquad \nu_t = -(l^*)^2 |S_{ij}|$$

Use this to set $\nu_{t(1)}$ Then $\nu_{t(g)} = \nu_{t(1)} = \nu_{t(wall)}$

Estimating eddy viscosity at the wall

Moeng 1984

Set $\frac{\delta u}{\delta z}$ according to log law at first point This affects S_{ij} and hence $\nu_{t(1)}$

 $\nu_{t(g)} = \nu_{t(1)} = \nu_{t(wall)}$

Shear stress reconstruction IBM

Most similar to WRF's BC

$$\begin{aligned} \tau_{wall_{xz}} &= -\frac{k}{\ln\frac{z_1}{z_0}}^2 \left| U \right| U \\ \tau_{wall_{yz}} &= -\frac{k}{\ln\frac{z_1}{z_0}}^2 \left| U \right| V \end{aligned}$$

- My favorite
- But requires rotation of stress tensor

Velocity reconstruction IBM

 Reconstruct velocity according to log law
Fadlun et al. 2000
Senocak et al. 2004

$$\frac{U}{u^*} = \frac{1}{k} \ln \frac{z}{z_0}$$

$$U_1 = U_2 \frac{\ln \frac{z_1}{z_0}}{\ln \frac{z_1}{z_0}}$$

Canopy method IBM

- Drag applied at cut cells
- All internal nodes set to zero
 - Anderson 2013
 - Frontal area A(x)

$$f(x,t) = -\frac{1}{2}C_D A(x) |U| U$$

 Form drag for immersed obstacle

IBM flat terrain – U velocity

IBM flat terrain – eddy viscosity

Moving to terrain

- Velocity reconstruction and canopy methods not good over flat terrain
- Focus on velocity gradient method and shear stress reconstruction

IBM 5° hill – U velocity

IBM 5° hill – eddy viscosity

IBM 20° hill – U velocity

IBM 20° hill – grid dependence

Challenges: velocity gradient method

WRF terrain-following grid skewed

- Introduces errors
- Runs at finer resolution (45 m) blow up
- Coarse case agrees better with IBM fine...
- IBM interpolation errors
 - Agreement is worst
 - Nearest neighbors are too far away

Move to shear stress reconstruction

3D shear stress reconstruction

Implementation challenges

- WRF uses vertical gradients, not normal derivatives
- Error in WRF eddy viscosity

WRF eddy viscosity bug fix

WRF using zero deformation at surface

Katie Lundquist

WRF Askervein simulations – U vel.

WRF Askervein simulations – U vel.

WRF Askervein – eddy viscosity

WRF Askervein – eddy viscosity

No-slip Askervein simulation

WRF to WRF-IBM interface

Develop interpolation framework
Grid nesting from WRF to IBM grids
And from IBM to IBM grids

WRF to WRF-IBM nesting

Nesting WRF to WRF-IBM

Current and future work

- Finish shear stress reconstruction implementation
 - Jingyi Bao
- IBM simulations for Granite Mountain
 - Bobby Arthur
 - ~10 m resolution, HPC
- Nested WRF simulations for Fall IOP 6
 - Alex Anderson-Connolly
 - This afternoon!
 - 100 m resolution
 - Work in progress

Extra slides

Initialization with meteorological data

- IBM domain extends below the lowest terrain height
- Interpolate met. data onto IBM grid for initialization and boundary forcing

Idealized hill

- Goal: match WRF and WRF-IBM results
- Notes about log law:
 - WRF implements d/dz instead of d/dn
 - WRF results depend on choice of dz

Vertical nesting in WRF

Idealized tests – flow over flat plate, heated flat plate

Vertical nesting in WRF

Real test cases – Jan 2000 snowstorm

Same vertical levels, 30:30

With vertical nesting, 30:60

Initialization with meteorological data

Run WRF-IBM with direct forcing from met. data

NAM

WRF-IBM

IBM - Boundary reconstruction

- IBM implemented in WRF
- 2 different interpolation algorithms
- Handles highly complex topography

Lundquist et al. MWR 2010, 2012

Katie's WRF eddy viscosity fix

Katie's WRF eddy viscosity fix

Terrain-following coordinates

Immersed boundary method

