Surfing the Tsunami

Candace Thille

Global Engineering Deans Council October 21, 2013

Stanford | Office of the Vice Provost for Online Learning

@stanfordonline online.stanford.edu

22-Aug-2013

"There's a tsunami coming...I can't tell you how it's going to break, but my goal is to surf it, not just stand there."

JOHN HENNESSY 2012

"Improvement in post secondary education will require converting teaching from a solo sport to a community-based research activity."

•Herbert Simon 1991

What is the Open Learning Initiative?

Scientifically-based online learning environments based on the **integration** of technology and the science of learning with teaching. OLI is **designed** to simultaneously improve learning and facilitate learning research.

22-Aug-2013

did I get this?

Determine the sum of three concurrent forces:

	-		_						
	H =	5.91	N						
What is	the direc	tion and t	he sens	e of the	vector sur	m? Ente	er the pos	itive angle	α
and ther	n choose	the corre	ct quad	rant:	0	a 🔪		-77-	
	α=	39.1	degr	ees		<u> </u>		_ " 🔪	
					e	•	ζa	0	Za
						4			_
Recall:									
Step 1	: Resolv	e each fo	rce into	compor	nents:				
F	1x = 7	19 I	N	F2x =	-6.40	N	E3x =	3.5	N
			•	1 20 -	-0.40	1	1 04 -	0.0	
F	1y = 4.9	99	N	F2y =	4.80	N	F3y =	-6.06	N
Sten 2	. Find th	e compor	onte of	the sum	by summ	ina com	nonente (of the force	
Otop 2				une sun	r by Summ	ing com			
R	x = ΣFx =	4.59	N		Ry =	= ΣFy =	3.73	N	
	_				- F	2.5	2		
Step 3	: Find th	e magnitu	ide of th	le sum	$K = \sqrt{F}$	(<u>*</u> + K	- 7		
	(enter)	our answ	er at the	e top)				ا م	
Step 4	: Find th	e direction	n and se	ense of	the vector	sum.	$\alpha = \tan \alpha$	$-1 \frac{ X_y }{ y }$	
	(enter y	our answ	er at the	e top)				$ R_{\mathbf{x}} $	
1 0	doi bood	Now c	lick he	re to try	one on y	our ow	n, withou	tus	

What is a Cognitive Tutor?

A computerized learning environment whose design is based on cognitive principles and whose interaction with students is based on that of a (human) tutor—i.e., making comments when the student errs, answering questions about what to do next, and maintaining a low profile when the student is performing well.

Principles Derived from Learning Science:

Practice Synthesizing and Applying Skills & Knowledge

22-Aug-2013

Module 3 / Arsenic in Bangladesh

To show how stoichiometry is used in practice, much of this course is set in the context of arsenic contamination in the ground water of Bangladesh. The following video introduces this context and why stoichiometry plays an important role in this environmental problem.

What Are the Affordances of the Technology?

22-Aug-2013

Performance

22-Aug-2013

Examining Distributions

ESTIMATED LEARNING LEVEL	Learning Obj	ectives				
	Summarize and descri [» Show Details]	ibe the distribution of a categorical variable in context.				
	Generate and interpret several different graphical displays of the distribution of a quantitative variable (histogram, stemplot, boxplot). [» Show Details]					
	Summarize and describe the distribution of a quantitative variable in context: a) describe the overall pattern, b) describe striking deviations from the pattern. [» Show Details]					
	Relate measures of center and spread to the shape of the distribution, and choose the appropriate measures in different contexts. [» Show Details]					
	Compare and contrast distributions (of quantitative data) from two or more groups, and produce a brief summary, interpreting your findings in context. [» Show Details]					
	Apply the standard deviation rule to the special case of distributions having the "normal" shape. [» Show Details]					
		0 112				
39 of 40 students participated 48% of 43 activities started on average » View Participation in Module by Student		Open-ended Responses ⇒ One Categorical Variable > Learn By Doing [11] ⇒ Histogram > Learn By Doing [4] ⇒ My Response: About Stemplots [9] ⇒ Measures of Center > Learn By Doing [12]	Checkpoint: Examining Distributions Checkpoint 1 [38] Checkpoint: Examining Distributions Checkpoint 2 [36]			
		⇒ Show All (14 more)				

Relate measures of center and spread to the shape of the distribution, and choose the appropriate measures in different contexts. [» Hide Details...]

Performance

22-Aug-2013

Team-based design and development

Performance

22-Aug-2013

LearnLab: Transforming Education Research

Ed tech + wide use = "Basic research at scale"

- NSF Science of Learning Center
- 10 years, ~\$50 million
- Tech enhanced courses, assessment, & research
- School cooperation for data collection

Learning Curve Analysis

DataShop: Pittsburgh Science of Learning Center

22-Aug-2013

OLI Review:

- Apply learning science research and scientific method to course development, implementation and evaluation.
- Develop interactive learning environments collaboratively
- Feedback loops for continuous improvement.
- Communities of use, evaluation and improvement.

What Difference Does it Make?

Results

OLI STUDY ON ACCELERATING STUDENT LEARNING WITH OLI STATISTICS

Lovett, M., Meyer, O., & Thille, C. (2008). The Open Learning Initiative: Measuring the effectiveness of the OLI statistics course in accelerating student learning. Journal of Interactive Media in Education.

This study, conducted at Carnegie Mellon University, shows that students using the OLI statistics course at Carnegie Mellon achieved the same or better learning outcomes as students in the traditional course in **half the time**.

INDEPENDANT TRIAL OF THE OLI STATISTICS COURSE

Bowen, W.G., Chingos, M.M., Lack, K.L., & Nygren, T.I. (2012). Interactive Learning Online at Public Universities: Evidence from Randomized Trials. ITHAKA.

The results of this study are remarkable; they show comparable learning outcomes for this basic course, with a promise of cost savings and productivity gains over time. Deanna Marcum Managing Director, Ithaka S+R

OLI v2.0

OpenEdX opening new possibilities

H.

22-Aug-2013

22-Aug-2013

Strategy for Educational Improvement

22-Aug-2013

"Without a complete revolution...in our approach to teaching...we cannot go beyond (current levels) of productivity" (Baumol, 1967).

> Our message: Such a revolution is possible.

Our question: Who will lead it?

 LearnLab is funded by The National Science Foundation award number SBE-0836012.

22-Aug-2013

• Extra Slides

Better Science & Technology ...

Improves Assessment

Increases Outcomes

Produces A Virtuous Cycle

22-Aug-2013

Learning Science & Engineering 20th Century 21st Century **Evidence Based Design Intuitive Design Connected Development Isolated Development Data Driven Flying Blind** Oversimplification **Managing Complexity**

22-Aug-2013

Open Data and Data Formats

Share Alike and Share Data

(This doesn't exist, but we think it should.)

Build and promote communities of research.

22-Aug-2013

Pasteur's Quadrant

Stokes argues basic/applied goals need not trade off

	Low Emphasis on Applied Work	High Emphasis on Applied Work
High Emphasis on Basic Science	How to translate to real world? (Bohr)	(Pasteur)
Low Emphasis on Basic Science	X	What principle can be derived? (Edison)

OLI Development and Use (2006)

Use

- 117,963 Course Enrollments (Academic)
- Used by 1,809
 Instructors in 1,050
 Institutions
- 1,148,807 Independent Learners (Registered and Anonymous)

Development

- 44 Academic courses have been created
- By 104 contributing Faculty from 55 Institutions

OLI Projects

- Open Professionals Education Network (OPEN) free services for TAACCCT grantees
- Community College Open Learning Initiative (CC-OLI)
- Next Generation Learning Challenge Projects
- Evaluation Pilots: WGU, Texas & Washington
- Carnegie Foundation Statway
- Introduction to Computer Science
- UMUC Development/Adaptation project
- OLNet Open Education Research Network
- Hewlett Packard Catalyst: Measuring Learning

Stanford University

22-Aug-2013

