
Eric Sims

University of Notre Dame

July 2009
This paper: one negative result, one positive result

- Negative: structural VARs cannot recover noise shocks when agents face signal extraction problems
- Positive: noise shocks about underlying fundamentals matter quantitatively for fluctuations

This discussion:
- Negative result not whole story; focus on what one can do with a structural VAR
- Positive result not so positive, very fragile with respect to model structure
Overview

- This paper: one negative result, one positive result
- Negative: structural VARs cannot recover noise shocks when agents face signal extraction problems

Discussion

- Negative result not whole story; focus on what one can do with a structural VAR
- Positive result not so positive, very fragile with respect to model structure
Overview

- This paper: one negative result, one positive result
 - Negative: structural VARs cannot recover noise shocks when agents face signal extraction problems
 - Positive: noise shocks about underlying fundamentals matter quantitatively for fluctuations

This discussion:
- Negative result not whole story; focus on what one can do with a structural VAR
- Positive result not so positive, very fragile with respect to model structure
Overview

• This paper: one negative result, one positive result
 • Negative: structural VARs cannot recover noise shocks when agents face signal extraction problems
 • Positive: noise shocks about underlying fundamentals matter quantitatively for fluctuations

• This discussion:
This paper: one negative result, one positive result

- Negative: structural VARs cannot recover noise shocks when agents face signal extraction problems
- Positive: noise shocks about underlying fundamentals matter quantitatively for fluctuations

This discussion:

- Negative result not whole story; focus on what one can do with a structural VAR

Sims (Notre Dame)
This paper: one negative result, one positive result

- Negative: structural VARs cannot recover noise shocks when agents face signal extraction problems
- Positive: noise shocks about underlying fundamentals matter quantitatively for fluctuations

This discussion:

- Negative result not whole story; focus on what one can do with a structural VAR
- Positive result not so positive, very fragile with respect to model structure
Process for productivity: \(a_t = x_t + z_t \).
A Simple Model with News and Noise

- Process for productivity: $a_t = x_t + z_t$.
- x is permanent component and z is transitory: $\Delta x_t = \rho \Delta x_{t-1} + \epsilon_t$ and $z_t = \rho z_{t-1} + \eta_t$
Process for productivity: $a_t = x_t + z_t$.

x is permanent component and z is transitory: $\Delta x_t = \rho \Delta x_{t-1} + \epsilon_t$ and $z_t = \rho z_{t-1} + \eta_t$

Model without capital; perfect consumption smoothing: $c_t = E_t c_{t+j}$ for all $j \geq 1$
A Simple Model with News and Noise

- Process for productivity: $a_t = x_t + z_t$.
- x is permanent component and z is transitory: $\Delta x_t = \rho \Delta x_{t-1} + \epsilon_t$ and $z_t = \rho z_{t-1} + \eta_t$
- Model without capital; perfect consumption smoothing: $c_t = E_t c_{t+j}$ $\forall j \geq 1$
- Natural rate assumption: $\lim_{j \to \infty} E_t c_{t+j} = E_t a_{t+j}$
A Simple Model with News and Noise

- Process for productivity: \(a_t = x_t + z_t \).
- \(x \) is permanent component and \(z \) is transitory: \(\Delta x_t = \rho \Delta x_{t-1} + \epsilon_t \) and \(z_t = \rho z_{t-1} + \eta_t \)
- Model without capital; perfect consumption smoothing: \(c_t = E_t c_{t+j} \forall j \geq 1 \)
- Natural rate assumption: \(\lim_{j \to \infty} E_t c_{t+j} = E_t a_{t+j} \)
- Implies that consumption only depends on \(x \)
Agents observe level of productivity, but don’t observe permanent component, only a noisy signal: \(s_t = x_t + v_t \)
Agents observe level of productivity, but don’t observe permanent component, only a noisy signal: \(s_t = x_t + v_t \)

Agents observe innovations to \(s_t \) and \(a_t \), use Kalman filter to form estimates of unobserved states, and then set consumption according to a simple linear policy rule.
Agents observe level of productivity, but don’t observe permanent component, only a noisy signal: \(s_t = x_t + v_t \)

Agents observe innovations to \(s_t \) and \(a_t \), use Kalman filter to form estimates of unobserved states, and then set consumption according to a simple linear policy rule

Primitive disturbances: \(\epsilon \) ("permanent shock"), \(\eta \) ("transitory shock"), and \(\nu \) ("noise shock")
Impulse Responses to Primitive Shocks

Sims (Notre Dame)

Discussion
Can a structural VAR approach recover these primitive disturbances?

- The agents generating the data can’t identify the primitive disturbances, nor can the econometrician.

The IRFs on previous page are not IRFs from the perspective of the agents’ information set.

There can be no expected reversion in consumption given the perfect smoothing FOC.

Long-run restriction cannot identify noise shock.
Can a structural VAR approach recover these primitive disturbances?
- No

The agents generating the data can’t identify the primitive disturbances, nor can the econometrician. There can be no expected reversion in consumption given the perfect smoothing FOC. Long-run restriction cannot identify noise shock.
A Structural VAR Approach

Can a structural VAR approach recover these primitive disturbances?
- No

Why not?

The agents generating the data can't identify the primitive disturbances, neither can the econometrician. The IRFs on the previous page are not IRFs from the perspective of the agents' information set.

There can be no expected reversion in consumption given the perfect smoothing FOC. Long-run restriction cannot identify noise shock.
Can a structural VAR approach recover these primitive disturbances?

- No

Why not?

- The agents generating the data can’t identify the primitive disturbances \implies the econometrician can’t either
A Structural VAR Approach

- Can a structural VAR approach recover these primitive disturbances? No
- Why not?
 - The agents generating the data can’t identify the primitive disturbances \implies the econometrician can’t either
- The IRFs on previous page are not IRFs from the perspective of the agents’ information set
A Structural VAR Approach

- Can a structural VAR approach recover these primitive disturbances?
 - No

- Why not?
 - The agents generating the data can’t identify the primitive disturbances \quad the econometrician can’t either

- The IRFs on previous page are *not* IRFs from the perspective of the agents’ information set

- There can be no expected reversion in consumption given the perfect smoothing FOC
Can a structural VAR approach recover these primitive disturbances?
- No

Why not?
- The agents generating the data can’t identify the primitive disturbances \implies the econometrician can’t either

The IRFs on previous page are *not* IRFs from the perspective of the agents’ information set
- There can be no expected reversion in consumption given the perfect smoothing FOC
- Long run restriction cannot identify noise shock
What are the “Shocks” to the Agents?

- Agents don’t observe the primitive shocks

Problem: (1) and (2) are correlated. But there exists a natural orthogonalization: signal innovation orthogonal to productivity innovation is “news shock.”
What are the “Shocks” to the Agents?

- Agents don’t observe the primitive shocks.
- Rather, they observe (1) an innovation to the current level of productivity and (2) an innovation to the signal about the permanent component of productivity.
What are the “Shocks” to the Agents?

- Agents don’t observe the primitive shocks
- Rather, they observe (1) an innovation to the current level of productivity and (2) an innovation to the signal about the permanent component of productivity
- Problem: (1) and (2) are correlated. But there exists a natural orthogonalization: signal innovation orthogonal to productivity innovation
What are the “Shocks” to the Agents?

- Agents don’t observe the primitive shocks.
- Rather, they observe (1) an innovation to the current level of productivity and (2) an innovation to the signal about the permanent component of productivity.
- Problem: (1) and (2) are correlated. But there exists a natural orthogonalization: signal innovation orthogonal to productivity innovation.
 - Signal innovation orthogonal to productivity is “news shock”.

Sims (Notre Dame)
IRFs from Perspective of Agents

IRF to A Innovation (Ordered First)*

- **Consumption**
- **Productivity**

IRF to S Innovation Orthogonal to A

- **Consumption**
- **Productivity**
Can a structural VAR identify shocks and IRFs from the perspective of the agents in the model?
A Structural VAR Approach

Can a structural VAR identify shocks and IRFs from the perspective of the agents in the model?

Yes!
Can a structural VAR identify shocks and IRFs from the perspective of the agents in the model?

- Yes!
- Can identify shocks even without observing signal

Estimate bivariate VAR with productivity and consumption

Order productivity first, consumption second in Choleski decomposition

This VAR recovers exactly (in large enough sample) shocks and IRFs from perspective of agents

Sims (Notre Dame)
Can a structural VAR identify shocks and IRFs from the perspective of the agents in the model?

- Yes!
- Can identify shocks even without observing signal

Estimate bivariate VAR with productivity and consumption
A Structural VAR Approach

- Can a structural VAR identify shocks and IRFs from the perspective of the agents in the model?
 - Yes!
 - Can identify shocks even without observing signal

- Estimate bivariate VAR with productivity and consumption
 - Order productivity first, consumption second in Choleski decomposition
Can a structural VAR identify shocks and IRFs from the perspective of the agents in the model?

- Yes!
- Can identify shocks even without observing signal

Estimate bivariate VAR with productivity and consumption

- Order productivity first, consumption second in Choleski decomposition
- This VAR recovers exactly (in large enough sample) shocks and IRFs from perspective of agents
SVAR and Model Responses

IRFs of C: A ordered first

IRFs of C: C orthogonal to A

IRFs of A: A ordered first

IRFs of A: C orthogonal to A

Simulated Model

Sims (Notre Dame) Discussion

06/09 10 / 24
Non-invertibility: there exists no rotation of VAR innovations which can recover structural shocks.

In a strict sense, yes: econometrician can’t observe permanent component of productivity. But neither can the agents in the economy. Situation better described as an invalid identifying restriction. There is no \textit{ex-ante} reversion to the “shocks” from the perspective of agents’ information sets in the model. Long run restrictions won’t work to identify noise shock.
Non-invertibility: there exists no rotation of VAR innovations which can recover structural shocks

- Can occur when econometrician can’t observe some state variables
Non-invertibility: there exists no rotation of VAR innovations which can recover structural shocks

- Can occur when econometrician can’t observe some state variables

Is this situation a non-invertibility?
Non-invertibility: there exists no rotation of VAR innovations which can recover structural shocks

Can occur when econometrician can’t observe some state variables

Is this situation a non-invertibility?

In a strict sense, yes: econometrician can’t observe permanent component of productivity
Non-invertibility: there exists no rotation of VAR innovations which can recover structural shocks

- Can occur when econometrician can’t observe some state variables

Is this situation a non-invertibility?

- In a strict sense, yes: econometrician can’t observe permanent component of productivity
- *But neither can the agents in the economy*
Invertibility

- Non-invertibility: there exists no rotation of VAR innovations which can recover structural shocks
 - Can occur when econometrician can’t observe some state variables
- Is this situation a non-invertibility?
 - In a strict sense, yes: econometrician can’t observe permanent component of productivity
 - *But neither can the agents in the economy*
- Situation better described as an invalid identifying restriction
Non-invertibility: there exists no rotation of VAR innovations which can recover structural shocks

- Can occur when econometrician can’t observe some state variables

Is this situation a non-invertibility?

- In a strict sense, yes: econometrician can’t observe permanent component of productivity
- *But neither can the agents in the economy*

Situation better described as an invalid identifying restriction

- There is no *ex-ante* reversion to the “shocks” from the perspective of agents’ information sets in the model
Invertibility

- Non-invertibility: there exists no rotation of VAR innovations which can recover structural shocks
 - Can occur when econometrician can’t observe some state variables
- Is this situation a non-invertibility?
 - In a strict sense, yes: econometrician can’t observe permanent component of productivity
 - *But neither can the agents in the economy*
- Situation better described as an invalid identifying restriction
 - There is no *ex-ante* reversion to the “shocks” from the perspective of agents’ information sets in the model
 - Long run restrictions won’t work to identify noise shock
Not possible to use long run restrictions to identify noise shocks
Bottom Line

- Not possible to use long run restrictions to identify noise shocks
- VAR is an *ex-ante* exercise; noise is only revealed *ex-post*
Not possible to use long run restrictions to identify noise shocks

- VAR is an *ex-ante* exercise; noise is only revealed *ex-post*
- Noise not a structural explanation for “demand shocks”
Bottom Line

- Not possible to use long run restrictions to identify noise shocks
 - VAR is an *ex-ante* exercise; noise is only revealed *ex-post*
 - Noise not a structural explanation for “demand shocks”
- But can identify “shocks” and IRFs from the perspective of agents
Not possible to use long run restrictions to identify noise shocks

- VAR is an *ex-ante* exercise; noise is only revealed *ex-post*
- Noise not a structural explanation for “demand shocks”

But can identify “shocks” and IRFs from the perspective of agents

- In particular, SVAR can identify “news shocks” about future
Not possible to use long run restrictions to identify noise shocks

- VAR is an *ex-ante* exercise; noise is only revealed *ex-post*
- Noise not a structural explanation for “demand shocks”

But can identify “shocks” and IRFs from the perspective of agents

- In particular, SVAR can identify “news shocks” about future

To say more about the role of noise, need to impose more structure
Authors estimate structural parameters of simple model.
Structural Estimation

- Authors estimate structural parameters of simple model
- Conclude that noise shocks matter – explain more than 70% of innovation variance of consumption and 50% at one year horizon
Authors estimate structural parameters of simple model

Conclude that noise shocks matter – explain more than 70% of innovation variance of consumption and 50% at one year horizon

The simple model is highly stylized
Structural Estimation

- Authors estimate structural parameters of simple model
- Conclude that noise shocks matter – explain more than 70% of innovation variance of consumption and 50% at one year horizon
- The simple model is highly stylized
 - Good for intuition
Structural Estimation

- Authors estimate structural parameters of simple model
- Conclude that noise shocks matter – explain more than 70% of innovation variance of consumption and 50% at one year horizon
- The simple model is highly stylized
 - Good for intuition
 - But valid for a serious quantitative exercise?
Structural Estimation

- Authors estimate structural parameters of simple model
- Conclude that noise shocks matter – explain more than 70% of innovation variance of consumption and 50% at one year horizon
- The simple model is highly stylized
 - Good for intuition
 - But valid for a serious quantitative exercise?
- Justification is that simple model is a special case of New Keynesian model
New Keynesian Model

- Process for productivity, signal extraction problem same as before

Equations of model:

\[E_t y_t + 1 = \pi_t + \nu_t \]

\[E_t \pi_t + 1 = \left(\frac{1}{\theta} \right) \left(\frac{1}{\beta} \theta \beta \right) \theta m_t + \beta E_t \pi_t + 1 m_t = \left(1 + \zeta \right) \left(y_t a_t \right) \]

\[i_t = \phi \pi_t \phi > 1 \]
New Keynesian Model

- Process for productivity, signal extraction problem same as before
- Equations of model:

\[
\begin{align*}
E_{t}y_{t+1} &= y_{t} + i_{t} - E_{t}\pi_{t+1} \\
\pi_{t} &= \frac{(1 - \theta)(1 - \theta\beta)}{\theta}mc_{t} + \beta E_{t}\pi_{t+1} \\
mc_{t} &= (1 + \zeta)(y_{t} - a_{t}) \\
i_{t} &= \phi\pi_{t} \quad \phi > 1
\end{align*}
\]
As $\theta \to 1$, this model reverts to simple model. Why?
As $\theta \to 1$, this model reverts to simple model. Why?

$\theta \to 1 \implies \pi_t = \beta E_t \pi_{t+1}$
Relation to Simple Model

As $\theta \to 1$, this model reverts to simple model. Why?

- $\theta \to 1 \implies \pi_t = \beta E_t \pi_{t+1}$
- $\beta < 1 \implies E_t \pi_{t+j} = 0 \quad \forall j \geq 0$

A constant real interest rate implies perfect consumption smoothing.
Relation to Simple Model

As $\theta \to 1$, this model reverts to simple model. Why?

- $\theta \to 1 \implies \pi_t = \beta E_t \pi_{t+1}$
- $\beta < 1 \implies E_t \pi_{t+j} = 0 \ \forall \ j \geq 0$
- $\pi_t = 0 \implies i_t = 0 \ \forall \ t \implies r_t = 0$
As $\theta \to 1$, this model reverts to simple model. Why?

- $\theta \to 1 \implies \pi_t = \beta E_t \pi_{t+1}$
- $\beta < 1 \implies E_t \pi_{t+j} = 0 \quad \forall \ j \geq 0$
- $\pi_t = 0 \implies i_t = 0 \quad \forall \ t \implies r_t = 0$
- A constant real interest rate implies perfect consumption smoothing
Constant interest rate matters. Effectively “turns off” general equilibrium.
Constant interest rate matters. Effectively “turns off” general equilibrium.

News/noise about long run productivity = increase consumption by full amount of expected long run movement in productivity.
Constant interest rate matters. Effectively “turns off” general equilibrium

News/noise about long run productivity \Rightarrow increase consumption by full amount of expected long run movement in productivity

But if interest rate not constant, it will (partially) choke off the increase in demand
Constant interest rate matters. Effectively “turns off” general equilibrium

News/noise about long run productivity = increase consumption by full amount of expected long run movement in productivity

But if interest rate not constant, it will (partially) choke off the increase in demand

Allowing $\theta < 1 \implies$ real interest rate will move around \implies news/noise will lead to smaller high frequency movements in consumption
Constant interest rate matters. Effectively “turns off” general equilibrium

News/noise about long run productivity = increase consumption by full amount of expected long run movement in productivity

But if interest rate not constant, it will (partially) choke off the increase in demand

Allowing $\theta < 1 \implies$ real interest rate will move around \implies news/noise will lead to smaller high frequency movements in consumption

Most empirical evidence suggests $\theta \leq 0.8$ ($\theta \approx 0.8$ preferred estimate in Gali and Gertler (1999))
Responses with Calvo Parameter $= 1$

- **Permanent Shock**
- **Transitory Shock**
- **Noise Shock**

Graphs showing the responses of consumption and productivity under different types of shocks. The graphs illustrate how consumption and productivity change over time in response to different types of shocks (permanent, transitory, and noise). The axes are labeled with appropriate units and scales to represent the changes in consumption and productivity.
Responses with Calvo Parameter = 0.8

Sims (Notre Dame)
A more plausible value of θ significantly reduces the impact effect of noise.
Implications

- A more plausible value of θ significantly reduces the impact effect of noise
 - Impact jump in consumption $\approx \frac{1}{5}$ as big
Implications

- A more plausible value of θ significantly reduces the impact effect of noise.
 - Impact jump in consumption $\approx \frac{1}{5}$ as big.
 - Also, responses to other two shocks more closely track movements in productivity.
A more plausible value of θ significantly reduces the impact effect of noise

- Impact jump in consumption $\approx \frac{1}{5}$ as big
- Also, responses to other two shocks more closely track movements in productivity
 - General equilibrium forces at work
Implications

- A more plausible value of θ significantly reduces the impact effect of noise
- Impact jump in consumption $\approx \frac{1}{5}$ as big
- Also, responses to other two shocks more closely track movements in productivity
- General equilibrium forces at work
- As $\theta \to 0$, this economy functions as an endowment economy with $y_t = a_t$
Variance Decomposition

- Fraction of forecast error variance of consumption due to noise shocks:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>$\theta = 1$</th>
<th>$\theta = 0.9$</th>
<th>$\theta = 0.8$</th>
<th>$\theta = 0.7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h = 1$</td>
<td>0.747</td>
<td>0.197</td>
<td>0.021</td>
<td>0.003</td>
</tr>
<tr>
<td>$h = 4$</td>
<td>0.529</td>
<td>0.111</td>
<td>0.011</td>
<td>0.002</td>
</tr>
<tr>
<td>$h = 8$</td>
<td>0.227</td>
<td>0.054</td>
<td>0.006</td>
<td>0.001</td>
</tr>
</tbody>
</table>

It really matters for quantitative results what θ is. As θ moves away from 1, noise ceases to matter regardless of other parameters.
Fraction of forecast error variance of consumption due to noise shocks:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>$\theta = 1$</th>
<th>$\theta = 0.9$</th>
<th>$\theta = 0.8$</th>
<th>$\theta = 0.7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h = 1$</td>
<td>0.747</td>
<td>0.197</td>
<td>0.021</td>
<td>0.003</td>
</tr>
<tr>
<td>$h = 4$</td>
<td>0.529</td>
<td>0.111</td>
<td>0.011</td>
<td>0.002</td>
</tr>
<tr>
<td>$h = 8$</td>
<td>0.227</td>
<td>0.054</td>
<td>0.006</td>
<td>0.001</td>
</tr>
</tbody>
</table>

It *really matters* for quantitative results what θ is.
Variance Decomposition

Fraction of forecast error variance of consumption due to noise shocks:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>$\theta = 1$</th>
<th>$\theta = 0.9$</th>
<th>$\theta = 0.8$</th>
<th>$\theta = 0.7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h = 1$</td>
<td>0.747</td>
<td>0.197</td>
<td>0.021</td>
<td>0.003</td>
</tr>
<tr>
<td>$h = 4$</td>
<td>0.529</td>
<td>0.111</td>
<td>0.011</td>
<td>0.002</td>
</tr>
<tr>
<td>$h = 8$</td>
<td>0.227</td>
<td>0.054</td>
<td>0.006</td>
<td>0.001</td>
</tr>
</tbody>
</table>

It really matters for quantitative results what θ is

As θ moves away from 1, noise ceases to matter
Variance Decomposition

- Fraction of forecast error variance of consumption due to noise shocks:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>$\theta = 1$</th>
<th>$\theta = 0.9$</th>
<th>$\theta = 0.8$</th>
<th>$\theta = 0.7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h = 1$</td>
<td>0.747</td>
<td>0.197</td>
<td>0.021</td>
<td>0.003</td>
</tr>
<tr>
<td>$h = 4$</td>
<td>0.529</td>
<td>0.111</td>
<td>0.011</td>
<td>0.002</td>
</tr>
<tr>
<td>$h = 8$</td>
<td>0.227</td>
<td>0.054</td>
<td>0.006</td>
<td>0.001</td>
</tr>
</tbody>
</table>

- It really matters for quantitative results what θ is
- As θ moves away from 1, noise ceases to matter
 - True regardless of other parameters
In Section 5, authors conduct robustness exercise where $\theta \neq 1$.

They estimate $\kappa = 0.0011$ (Table 5). This is close to baseline results with $\theta = 1$, so estimation results on importance of noise shocks essentially the same.

How does this compare to other estimates in literature?

Gali and Gertler (1999): estimate slope of Phillips Curve in terms of marginal cost at 0.023.

Even if labor supply elasticity is ∞ (so $\zeta = 0$), $\kappa = 0.0011$ is less than $\frac{1}{20}$ the magnitude of GG’ s estimate!
In Section 5, authors conduct robustness exercise where $\theta \neq 1$.

Estimate slope of Phillips Curve expressed in terms of output gap:

$$\kappa = (1 + \zeta) \frac{(1 - \theta)(1 - \theta \beta)}{\theta}$$

They estimate $\kappa = 0.0011$ (Table 5). This is close to baseline results with $\theta = 1$, so estimation results on importance of noise shocks essentially the same.

How does this compare to other estimates in literature?

Gali and Gertler (1999): estimate slope of Phillips Curve in terms of marginal cost at 0.023. Even if labor supply elasticity is ∞ (so $\zeta = 0$), $\kappa = 0.0011$ is less than $\frac{1}{20}$ the magnitude of GG's estimate!
Robustness

- In Section 5, authors conduct robustness exercise where $\theta \neq 1$.
- Estimate slope of Phillips Curve expressed in terms of output gap:
 \[\kappa = (1 + \zeta) \frac{(1 - \theta)(1 - \theta \beta)}{\theta} \]
- They estimate $\kappa = 0.0011$ (Table 5). This is close to baseline results with $\theta = 1$, so estimation results on importance of noise shocks essentially the same

How does this compare to other estimates in literature?

Gali and Gertler (1999): estimate slope of Phillips Curve in terms of marginal cost at 0.023. Even if labor supply elasticity is ∞ (so $\zeta = 0$), $\kappa = 0.0011$ is less than the magnitude of GG's estimate!
In Section 5, authors conduct robustness exercise where $\theta \neq 1$.

Estimate slope of Phillips Curve expressed in terms of output gap:

$$\kappa = \frac{(1 + \zeta) (1 - \theta) (1 - \theta \beta)}{\theta}$$

They estimate $\kappa = 0.0011$ (Table 5). This is close to baseline results with $\theta = 1$, so estimation results on importance of noise shocks essentially the same.

How does this compare to other estimates in literature?

Gali and Gertler (1999): estimate slope of Phillips Curve in terms of marginal cost at 0.023. Even if labor supply elasticity is ∞ (so $\zeta = 0$), $\kappa = 0.0011$ is less than the magnitude of GG's estimate!
In Section 5, authors conduct robustness exercise where $\theta \neq 1$.

Estimate slope of Phillips Curve expressed in terms of output gap:

$$\kappa = (1 + \zeta) \frac{(1 - \theta)(1 - \theta \beta)}{\theta}$$

They estimate $\kappa = 0.0011$ (Table 5). This is close to baseline results with $\theta = 1$, so estimation results on importance of noise shocks essentially the same.

How does this compare to other estimates in literature?

- Gali and Gertler (1999): estimate slope of Phillips Curve in terms of marginal cost at 0.023.
In Section 5, authors conduct robustness exercise where $\theta \neq 1$.

Estimate slope of Phillips Curve expressed in terms of output gap:

$$\kappa = \left(1 + \frac{1}{\theta}\right)(1 - \theta \beta) \frac{1}{\theta}$$

They estimate $\kappa = 0.0011$ (Table 5). This is close to baseline results with $\theta = 1$, so estimation results on importance of noise shocks essentially the same.

How does this compare to other estimates in literature?

- Gali and Gertler (1999): estimate slope of Phillips Curve in terms of marginal cost at 0.023.
- Even if labor supply elasticity is ∞ (so $\zeta = 0$), $\kappa = 0.0011$ is less than $\frac{1}{20}$ the magnitude of GG’s estimate!
Implications

- Suppose $\kappa = 0.0011$ and $\beta = 0.99$. The lower bound on θ is then 0.972. More plausible labor supply elasticity implies $\theta \approx 1$.

The estimated model then has the following testable implications:

- Essentially no time series variation in either interest rates or inflation
- Average duration between price changes of 10 years or more

Both are clearly at odds with data (Bils and Klenow (2004) suggest average duration between price changes six months)

Bottom line: this parameterization of the model cannot be close to the true data generating process

Cannot conclude that noise shocks are an important source of fluctuations on the basis of estimating this model.
Implications

- Suppose $\kappa = 0.0011$ and $\beta = 0.99$. The lower bound on θ is then 0.972. More plausible labor supply elasticity implies $\theta \approx 1$.

- The estimated model then has the following testable implications:

 - Essentially no time series variation in either interest rates or inflation
 - Average duration between price changes of 10 years or more
 - Both are clearly at odds with data (Bils and Klenow (2004) suggest average duration between price changes six months)

Bottom line: this parameterization of the model cannot be close to the true data generating process.

Cannot conclude that noise shocks are an important source of fluctuations on the basis of estimating this model.
Implications

- Suppose $\kappa = 0.0011$ and $\beta = 0.99$. The lower bound on θ is then 0.972. More plausible labor supply elasticity implies $\theta \approx 1$.
- The estimated model then has the following testable implications:
 1. Essentially no time series variation in either interest rates or inflation.
Suppose $\kappa = 0.0011$ and $\beta = 0.99$. The lower bound on θ is then 0.972. More plausible labor supply elasticity implies $\theta \approx 1$.

The estimated model then has the following testable implications:

1. Essentially no time series variation in either interest rates or inflation.
2. Average duration between price changes of 10 years or more.

Bottom line: this parameterization of the model cannot be close to the true data generating process. Cannot conclude that noise shocks are an important source of fluctuations on the basis of estimating this model.
Implications

Suppose $\kappa = 0.0011$ and $\beta = 0.99$. The lower bound on θ is then 0.972. More plausible labor supply elasticity implies $\theta \approx 1$.

The estimated model then has the following testable implications:

1. Essentially no time series variation in either interest rates or inflation.
2. Average duration between price changes of 10 years or more.

Both are clearly at odds with data (Bils and Klenow (2004) suggest average duration between price changes \approx six months).

Sims (Notre Dame)
Suppose $\kappa = 0.0011$ and $\beta = 0.99$. The lower bound on θ is then 0.972. More plausible labor supply elasticity implies $\theta \approx 1$.

The estimated model then has the following testable implications:

1. Essentially no time series variation in either interest rates or inflation
2. Average duration between price changes of 10 years or more

Both are clearly at odds with data (Bils and Klenow (2004) suggest average duration between price changes \approx six months)

Bottom line: this parameterization of the model cannot be close to the true data generating process.
Suppose $\kappa = 0.0011$ and $\beta = 0.99$. The lower bound on θ is then 0.972. More plausible labor supply elasticity implies $\theta \approx 1$

The estimated model then has the following testable implications:

1. Essentially no time series variation in either interest rates or inflation
2. Average duration between price changes of 10 years or more

Both are clearly at odds with data (Bils and Klenow (2004) suggest average duration between price changes \approx six months)

Bottom line: this parameterization of the model cannot be close to the true data generating process

Cannot conclude that noise shocks are an important source of fluctuations on the basis of estimating this model
Discussion of Their Results

- Why are they getting these results?

Only observables from the data in their estimation are consumption and productivity growth. Model is really designed to explain inflation dynamics. Not modeling other shocks. No real rigidities. No capital.

Suggestions:
- Condition on more observables in estimation (include inflation).
- Model real rigidities explicitly.

Sims (Notre Dame)
Discussion of Their Results

- Why are they getting these results?
 - Only observables from the data in their estimation are consumption and productivity growth
Why are they getting these results?

- Only observables from the data in their estimation are consumption and productivity growth
- Model is really designed to explain inflation dynamics
Why are they getting these results?

- Only observables from the data in their estimation are consumption and productivity growth
- Model is really designed to explain inflation dynamics
- Not modeling other shocks
Discussion of Their Results

- Why are they getting these results?
 - Only observables from the data in their estimation are consumption and productivity growth
 - Model is really designed to explain inflation dynamics
 - Not modeling other shocks
 - No real rigidities

Suggestions:
- Condition on more observables in estimation (include inflation)
- Model real rigidities explicitly
Why are they getting these results?

- Only observables from the data in their estimation are consumption and productivity growth
 - Model is really designed to explain inflation dynamics
- Not modeling other shocks
- No real rigidities
- No capital

Suggestions:
- Condition on more observables in estimation (include inflation)
- Model real rigidities explicitly
Why are they getting these results?

- Only observables from the data in their estimation are consumption and productivity growth
 - Model is really designed to explain inflation dynamics
- Not modeling other shocks
- No real rigidities
- No capital

Suggestions:
Discussion of Their Results

- Why are they getting these results?
 - Only observables from the data in their estimation are consumption and productivity growth
 - Model is really designed to explain inflation dynamics
 - Not modeling other shocks
 - No real rigidities
 - No capital

- Suggestions:
 - Condition on more observables in estimation (include inflation)
Discussion of Their Results

- Why are they getting these results?
 - Only observables from the data in their estimation are consumption and productivity growth
 - Model is really designed to explain inflation dynamics
 - Not modeling other shocks
 - No real rigidities
 - No capital

- Suggestions:
 - Condition on more observables in estimation (include inflation)
 - Model real rigidities explicitly
This model of noise essentially works through a wealth effect.
This model of noise essentially works through a wealth effect
Really difficult to produce business cycle behavior through this channel
This model of noise essentially works through a wealth effect.

Really difficult to produce business cycle behavior through this channel.

General equilibrium makes it difficult for noise to do much at high frequencies.
This model of noise essentially works through a wealth effect

Really difficult to produce business cycle behavior through this channel

- General equilibrium makes it difficult for noise to do much at high frequencies
- Learning makes noise not persistent enough
Extensions

- This model of noise essentially works through a wealth effect
- Really difficult to produce business cycle behavior through this channel
 - General equilibrium makes it difficult for noise to do much at high frequencies
 - Learning makes noise not persistent enough
 - Will produce negative aggregate comovement in a model with capital
This model of noise essentially works through a wealth effect
Really difficult to produce business cycle behavior through this channel
 General equilibrium makes it difficult for noise to do much at high frequencies
 Learning makes noise not persistent enough
 Will produce negative aggregate comovement in a model with capital
Maybe think about modeling noise explicitly on the firm side of the model