Money Demand
ECON 40364: Monetary Theory & Policy

Eric Sims

University of Notre Dame

Fall 2020
Readings

- Mishkin Ch. 19
- Friedman, Ch. 2 (section “The Demand for Money” through the end of the chapter)
Classical Monetary Theory

- We have now defined what money is and how the supply of money is set
- What determines the demand for money?
- How do the demand and supply of money determine the price level, interest rates, and inflation?
- We will focus on a framework in which money is **neutral** and the **classical dichotomy** holds: real variables (such as output and the real interest rate) are determined independently of nominal variables like money
- We can think of such a world as characterizing the “medium” or “long” runs (periods of time measured in several years)
- We will soon discuss the “short run” when money is not neutral
Velocity and the Equation of Exchange

- Let $Y_t$ denote real output in period $t$, which we can take to be exogenous with respect to the money supply.

- $P_t$ is the dollar price of output, so $P_t Y_t$ is the dollar value of output (i.e. nominal GDP).

- $\frac{1}{P_t}$ is the “price” of money measured in terms of goods.

- Define velocity as the average number of times per year that the typical unit of money, $M_t$, is spent on goods and serves. Denote by $V_t$.

- The “equation of exchange” or “quantity equation” is:

  $$M_t V_t = P_t Y_t$$

- This equation is an identity and defines velocity as the ratio of nominal GDP to the money supply.
From Equation of Exchange to Quantity Theory

- The quantity equation can be interpreted as a theory of money demand by making assumptions about velocity.
- Can write:
  \[ M_t = \frac{1}{V_t} P_t Y_t \]
- Monetarists: velocity is determined primarily by payments technology (e.g. credit cards, ATMs, etc) and is therefore close to constant (or at least changes are low frequency and therefore predictable).
- Let \( \kappa = V_t^{-1} \) and treat it as constant. Since money demand, \( M^d_t \), equals money supply, \( M_t \), our money demand function is:
  \[ M^d_t = \kappa P_t Y_t \]
- Money demand proportional to nominal income; \( \kappa \) does not depend on things like interest rates.
- This is called the quantity theory of money.
The terms “velocity” and “money demand” are often used interchangeably.

Re-write in terms of real balances (purchasing power of money): 

\[ \frac{M_t}{P_t} = \frac{1}{V_t} Y_t \]

The demand for real balance is proportional to the real quantity of exchange.

\( \frac{1}{V_t} \) is the demand “shifter” – demand for money goes up, means velocity goes down.

Quantity theory of money: assumes velocity is roughly constant (equivalently, demand for money is stable).
Money and Prices

- Take natural logs of equation of exchange:

\[ \ln M_t + \ln V_t = \ln P_t + \ln Y_t \]

- If \( V_t \) is constant and \( Y_t \) is exogenous with respect to \( M_t \), then:

\[ d \ln M_t = d \ln P_t \]

- In other words, a change in the money supply results in a proportional change in the price level (i.e. if the money supply increases by 5 percent, the price level increases by 5 percent).
Money and Inflation

▶ Since the quantity equation holds in all periods, we can first difference it across time:

\[
\begin{align*}
(ln M_t - ln M_{t-1}) + (ln V_t - ln V_{t-1}) &= \\
(ln P_t - ln P_{t-1}) + (ln Y_t - ln Y_{t-1})
\end{align*}
\]

▶ The first difference of logs across time is approximately the growth rate

▶ Inflation, \( \pi_t \), is the growth rate of the price level

▶ Constant velocity implies:

\[
\pi_t = g_t^M - g_t^Y
\]

▶ Inflation is the difference between the growth rate of money and the growth rate of output

▶ If output growth is independent of the money supply, then inflation and money growth ought to be perfectly correlated
(a) U.S. Inflation and Money Growth Rates by Decade, 1870s–2000s

Decades with high money growth rates have high inflation rates.
Countries with high money growth rates, such as Turkey, Ukraine, and Zambia, have high inflation rates.
Nominal and Real Interest Rates

- The nominal interest rate tells you what percentage of your nominal principal you get back (or have to pay back, in the case of borrowing) in exchange for saving your money. Denote by $i_t$

- There are many interest rates, differing by time to maturity and risk. Ignore this for now. Think about one period (riskless) interest rates – i.e. between $t$ and $t+1$

- The real interest rate tells you what percentage of a good you get back (or have to pay back, in the case of borrowing) in exchange for saving a good. Denote by $r_t$

- Putting one good “in the bank” $\Rightarrow P_t$ dollars in bank $\Rightarrow (1 + i_t)P_t$ dollars tomorrow $\Rightarrow$ purchases $(1 + i_t)\frac{P_t}{P_{t+1}}$ goods tomorrow
The Fisher Relationship

- The relationship between the real and nominal interest rate is then:

\[ 1 + r_t = (1 + i_t) \frac{P_t}{P_{t+1}} \]

- Since the inverse of the ratio of prices across time is the expected gross inflation rate, we have:

\[ 1 + r_t = \frac{1 + i_t}{1 + \pi^e_{t+1}} \]

- Here \( \pi^e_{t+1} \) is expected inflation between \( t \) and \( t + 1 \)

- Approximately:

\[ r_t = i_t - \pi^e_{t+1} \]
Classical Dichotomy

► In the classical dichotomy, $r_t$ is independent of anything nominal

► So $i_t$ moves one-for-one with $\pi_{t+1}^e$:

\[
i_t = r_t + \pi_{t+1}^e
\]

► What drives $\pi_{t+1}^e$? Plausible that it’s realized inflation (adaptive expectations), so:

\[
i_t = r_t + \pi_t
\]

► So, there should be a tight connection between inflation and nominal interest rates

► To extent to which quantity theory holds (i.e. inflation driven by money growth), then also a tight connection between money growth and the level of nominal interest rates
Inflation Rate vs Three Month Treasury Bill Rate

Correlation = 0.74
Theoretical Predictions

- The basic quantity theory in which the classical dichotomy holds (real output, real output growth, and the real interest rate independent of nominal things) makes a number of stark predictions
  1. The level of the money supply and the price level are closely linked
  2. The growth rate of the money supply and the inflation rate are closely linked
  3. The inflation rate and the nominal interest rate are closely linked

  This is not an implication of quantity theory per se – follows from Fisher relationship plus classical dichotomy / monetary neutrality

  But quantity theory goes a step further – nominal interest rates linked to money growth
Problems with the Quantity Theory

- The quantity theory seems to provide a pretty good theory of inflation and interest rates over the medium to long run as well as in a cross section of countries.

- What about the short run?

- Problems with the quantity theory:
  - The shorter term relationships between money growth and both inflation and nominal interest rates are weak.
  - Velocity is not constant and has become harder to predict, particularly since the early 1980s.
Velocity of M1 Money Stock

Source: Federal Reserve Bank of St. Louis
fred.stlouisfed.org
Moving Beyond the Quantity Theory

- The key assumption in the quantity theory is that the demand for money (i.e. velocity) is stable (or at least predictable) – you hold money to buy stuff, and how much money you need is proportional to how much you buy.
- Liquidity preference theory of money demand: money competes with other assets as a store of value. Money is more liquid (can be used in exchange), but how much you want to hold depends on return on other assets.
- Demand for real money balances, \( m_t = \frac{M_t}{P_t} \), is an increasing function of output, \( Y_t \), but a decreasing function of the nominal interest rate, \( i_t \):
  \[
  \frac{M_t}{P_t} = L(i_t, Y_t)
  \]
- But then velocity:
  \[
  V_t = \frac{P_t Y_t}{M_t} = \frac{Y_t}{L(i_t, Y_t)}
  \]
Two Simple Models

We can generate a liquidity preference theory of money demand via two different setups:

1. Baumol-Tobin: this is an *intratemporal portfolio allocation* problem. Given desired spending, how to allocate wealth between money and bonds (which pay interest)
2. Money in the Utility Function (MIU): this is an *intertemporal* problem with both a consumption-saving decision and a portfolio allocation problem

Both generate something like: \( m_t = L(i_t, Y_t) \)
Baumol-Tobin

- You need to spend $Y$ over the course of a period (say, a year). This is given.
- You have sufficient wealth to do this.
- Average holdings of illiquid wealth earn nominal return $i$.
- Need to determine how much real money balances to hold to hold, which earns nothing. Have to support transactions with real balances.
- You can withdraw money as often as you please, but each withdrawal incurs a “shoeleather cost” of $K \geq 0$. 


One “Trip to the Bank”

- Suppose you withdraw all the funds you need at the beginning of a period. So you make one trip.
- Then your average real balance holdings over the period are $Y/2$.
- You forego $iY/2$ in interest by holding money instead of bonds.
- And pay a shoeleather cost of $K$.
- Total cost is:

$$TC = K + \frac{iY}{2}$$
\[ TC = K + i \frac{Y}{2} \]
Two Trips

Real balances

Avg. real balances

\[ m = \frac{Y}{4} \]

\[ TC = 2K + i \frac{Y}{4} \]
Three Trips

\[ \text{Real balances} \]

\[ Y \]

\[ \frac{Y}{3} \]

\[ \text{Avg. real balances} \]

\[ m = \frac{Y}{6} \]

\[ TC = 3K + \frac{Y}{6} \]
General Case

- Total cost as a function of trips, $T$, is:

$$TC = TK + i \frac{Y}{2T}$$

- Average real balance holdings:

$$m = \frac{Y}{2T}$$

- Re-write total cost in terms of $m$ instead of $T$:

$$TC = \frac{KY}{2m} + im$$
Money Demand Function

- Use calculus to get first order condition:

\[ m = \sqrt{\frac{KY}{2i}} \]

- Or re-arranging:

\[ m = \left( \frac{KY}{2} \right)^{\frac{1}{2}} i^{-\frac{1}{2}} \]

- Demand for real balances increasing in \( Y \) and decreasing in \( i \)
Money in the Utility Function

- Suppose that there is a representative household who receives utility from consuming goods and holding real money balances, $m_t = \frac{M_t}{P_t}$. Flow utility:

$$U \left( C_t, \frac{M_t}{P_t} \right) = \ln C_t + \psi \ln \left( \frac{M_t}{P_t} \right)$$

- Flow budget constraint:

$$P_t C_t + B_t - B_{t-1} + M_t - M_{t-1} \leq P_t Y_t - P_t T_t + i_{t-1} B_{t-1}$$

- $B_{t-1}$ and $M_{t-1}$: stocks of bonds and money household enters $t$ with

- Both enter as stores of value. Difference being that bonds pay interest
Problem

- Household discounts future utility flows by $\beta \in [0, 1)$
- Both a dynamic aspect to the problem and a portfolio allocation aspect to problem
  1. Dynamic: how much to consume today vs future?
  2. Portfolio allocation: how much to save in money (no interest) vs bonds (interest-bearing)?
Optimality Conditions

- Plugging constraints in and taking derivatives yields:

\[
\frac{1}{C_t} = \beta \frac{1}{C_{t+1}} (1 + i_t) \frac{P_t}{P_{t+1}}
\]

\[
\psi \frac{P_t}{M_t} = \frac{1}{C_t} - \beta \frac{1}{C_{t+1}} \frac{P_t}{P_{t+1}}
\]

- First is the standard consumption Euler equation taking Fisher relationship into account
- Second is the portfolio allocation part
- Combine to get:

\[
\psi \frac{P_t}{M_t} = \frac{1}{C_t} \left(1 - \frac{1}{1 + i_t}\right)
\]
“Closing” Model

- Government sets money supply, taxes, and issues bonds. Does no spending:

\[ i_{t-1} B_{t-1} = P_t T_t + B_t - B_{t-1} + M_t - M_{t-1} \]

- Finances interest expenses with (i) taxes, (ii) new debt issuance, (iii) “printing” new money (no banking sector so no distinction between \( M \) and \( MB \))

- Market-clearing: households holds all debt and money issued by government

- End up with equilibrium market-clearing condition: \( C_t = Y_t \)
Money Demand Function

- Making use of market-clearing and combining the FOC yields:

\[ \psi m_t^{-1} = \frac{1}{Y_t} \frac{i_t}{1 + i_t} \]

- Re-arranging:

\[ m_t = \psi Y_t \frac{1 + i_t}{i_t} \]

- Demand for real balances: (i) increasing in \( Y_t \) and \( \psi \) (i.e. in the “usefulness” of money, as put by Friedman), (ii) decreasing in \( i_t \) (i.e. the “cost” of money, as put by Friedman)

- Zero lower bound: must have \( i_t \geq 0 \) to get non-negative real balances. At \( i_t \to 0 \), demand for real balances goes to infinity
Milton Friedman argued that optimal monetary policy in the medium to long run would target a nominal interest rate of zero. With a positive real rate of interest, this would require deflation. Basic intuition: a positive nominal interest rate dissuades people from holding money by increasing the opportunity cost of liquidity relative to bonds, whereas the marginal cost of producing (fiat) money is essentially zero. At a social optimum, want to equate private cost of holding money (interest rate) to the public cost of producing money (zero). Holds in both the MIU model ($i = 0$ maximizes utility) and the B-T model ($i = 0$ minimizes the cost of holding money). Why don’t central banks follow Friedman rule? Because of the zero lower bound and short run stabilization policy. Does help us understand desire for low interest rates, however.
Optimality of $i = 0$
Milton Friedman famously said that “inflation is everywhere and always a monetary phenomenon”

Simple logic based on the quantity equation. Works pretty well in the medium to long run

What about extreme situations of inflation, or what are called “hyperinflations”?

Monetary phenomena triggered by fiscal problems
## Table 8.1 Hyperinflations in History

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Highest Inflation per Month %</th>
<th>Country</th>
<th>Year</th>
<th>Highest Inflation per Month %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>1989/90</td>
<td>196</td>
<td>Hungary</td>
<td>1945/46</td>
<td>$1.295 \times 10^{16}$</td>
</tr>
<tr>
<td>Armenia</td>
<td>1993/94</td>
<td>438</td>
<td>Kazakhstan</td>
<td>1994</td>
<td>57</td>
</tr>
<tr>
<td>Austria</td>
<td>1921/22</td>
<td>124</td>
<td>Kyrgyzstan</td>
<td>1992</td>
<td>157</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>1991/94</td>
<td>118</td>
<td>Nicaragua</td>
<td>1986/89</td>
<td>127</td>
</tr>
<tr>
<td>Belarus</td>
<td>1994</td>
<td>53</td>
<td>Peru</td>
<td>1921/24</td>
<td>114</td>
</tr>
<tr>
<td>Bolivia</td>
<td>1984/86</td>
<td>120</td>
<td>Poland</td>
<td>1989/90</td>
<td>188</td>
</tr>
<tr>
<td>Brazil</td>
<td>1989/93</td>
<td>84</td>
<td>Poland</td>
<td>1992/94</td>
<td>77</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1997</td>
<td>242</td>
<td>Serbia</td>
<td>1922/24</td>
<td>$309,000,000$</td>
</tr>
<tr>
<td>China</td>
<td>1947/49</td>
<td>4,209</td>
<td>Soviet Union</td>
<td>1945/49</td>
<td>279</td>
</tr>
<tr>
<td>Congo (Zaire)</td>
<td>1991/94</td>
<td>225</td>
<td>Taiwan</td>
<td>1995</td>
<td>399</td>
</tr>
<tr>
<td>France</td>
<td>1789/96</td>
<td>143</td>
<td>Tajikistan</td>
<td>1993/96</td>
<td>78</td>
</tr>
<tr>
<td>Georgia</td>
<td>1993/94</td>
<td>197</td>
<td>Turkmenistan</td>
<td>1992/94</td>
<td>63</td>
</tr>
<tr>
<td>Germany</td>
<td>1920/23</td>
<td>29,500</td>
<td>Ukraine</td>
<td>1990</td>
<td>249</td>
</tr>
<tr>
<td>Greece</td>
<td>1942/45</td>
<td>11,288</td>
<td>Yugoslavia</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>Hungary</td>
<td>1923/24</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hyperinflations Usually a Fiscal Phenomenon

- Most hyperinflations in history are associated with fiscal mischief
- Government’s budget constraint:

\[ P_t G_t + i_{t-1} B_{G,t-1} = P_t T_t + M_t - M_{t-1} + B_{G,t} - B_{G,t-1} \]

- Here \( P_t \) is the nominal price of goods (i.e. the price level), \( B_{G,t-1} \) is the stock of debt with which a government enters period \( t \), \( B_{G,t} \) is the stock of debt the government takes from \( t \) to \( t+1 \), \( i_{t-1} \) is the nominal interest rate on that debt, \( T_t \) is tax revenue (real), and \( M_t \) is the money supply
- Deficit equals change in money supply plus change in debt:

\[ P_t G_t + i_{t-1} B_{G,t-1} - P_t T_t = M_t - M_{t-1} + B_{G,t} - B_{G,t-1} \]
Monetizing the Debt

- If tax revenue doesn’t cover expenditure (spending plus interest on debt), then government either has to issue more debt or “print more money”
- In some cases printing more money is explicit, in others implicit
- Monetizing the debt: fiscal authority issues debt to finance deficit, but monetary authority buys the debt by doing open market operations, which creates base money
Application: Seigniorage and the Inflation Tax

- Recall from the government’s budget constraint above when talking about hyperinflations that *nominal* revenue from printing money is simply: \( M_t - M_{t-1} \)
- *Real* revenue from printing money is \( \frac{M_t - M_{t-1}}{P_t} \)
- We call the real revenue from printing money **seigniorage**
- This can be written:

  \[
  \text{Seigniorage} = \frac{M_t - M_{t-1}}{P_t}
  \]

- This can equivalently be written:

  \[
  \text{Seigniorage} = \frac{M_t - M_{t-1}}{M_{t-1}} \frac{M_{t-1}}{M_t} \frac{M_t}{P_t}
  \]
More Seigniorage

- Define the growth rate of money as:

\[ g_t^M = \frac{M_t - M_{t-1}}{M_{t-1}} \]

- Then the expression for seigniorage can be written:

\[ \text{Seigniorage} = \frac{g_t^M}{1 + g_t^M} m_t \]

- This is approximately:

\[ \text{Seigniorage} = g_t^M m_t \]

- Seigniorage is tax revenue from printing more money – \( g_t^M \) is effectively the “tax rate” and \( m_t \) is the “tax base”
Seigniorage in the Medium to Long Run

- Drop time subscripts
- Suppose that the real interest rate is constant and invariant to nominal variables (classical dichotomy)

Fisher relationship:

\[ i = r + \pi \]

- Suppose that the inflation rate equals the money growth rate, so:

\[ i = r + g^M \]

- If demand for real balances is generically given by:
  \[ m = L(i, Y) \], then we can write demand for real balances as:

\[ m = L(r + g^M, Y) \]
“Optimal” Inflation Tax

- Suppose that a central bank wants to pick $g^M$ to maximize seigniorage. Problem is:

$$\max_{g^M} g^M L(r + g^M, Y)$$

- Provided money demand is decreasing in nominal interest rate (i.e. $L_i(\cdot) < 0$), then two competing effects of higher $g^M$:
  1. Tax rate: higher $g^M \Rightarrow$ higher tax rate
  2. Base: higher $g^M \Rightarrow$ lower tax base

- First order condition:

$$g^M = -\frac{L(r + g^M, Y)}{L_i(r + g^M, Y)}$$

- Revenue-maximizing growth rate of money inversely related to interest sensitivity of money demand
- If money demand interest insensitive (e.g. quantity theory), then revenue-maximizing $g^M = \infty$!
- Desire for seigniorage another reason to move away from Friedman rule