Thermodynamic Properties of Uranyl Minerals: Constraints from Calorimetry and Solubility Measurements

Tatiana Y. Shvareva, Jeremy B. Fein, and Alexandra Navrotsky*

1University of California, Davis, Peter A. Rock Thermochemistry Laboratory, One Shields Avenue, Davis, California 95616, United States
2University of Notre Dame, Department of Civil Engineering and Geological Sciences, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, United States

ABSTRACT: More than 50 uranyl minerals, phases containing \(\text{U}^{6+} \) as the uranyl \(\text{UO}_2^{2+} \) cation, and hydroxide, carbonate, phosphate, and silicate anions, \(\text{H}_2\text{O} \) and alkali and alkaline earth cations, occur in nature and as corrosion products of spent nuclear fuel. Despite their importance and the need to understand their thermodynamics to predict uranium solubility, fate, and transport in the environment, reliable thermodynamic data have only been available recently. This paper summarizes recent studies of enthalpies of formation using high temperature oxide melt solution calorimetry and Gibbs free energies from solubility experiments. Standard state thermochemical parameters (at 25 °C and 1 bar) are tabulated and the stability and transformation sequences of these phases are discussed. The enthalpies of formation from oxides are discussed in terms of crystal structure and Lewis acid—base interactions.

INTRODUCTION

As nuclear power becomes an increasing source of world energy, the environmental fate of actinides must be unambiguously predicted. Because, in the long term, spent nuclear fuel is not stable under moist oxidizing conditions, oxidative dissolution of radionuclides in groundwater with consequent formation of uranyl minerals is a likely alteration pathway. With uraninite (\(\text{UO}_2 \)) being the major component of nuclear fuel, the most crucial studies are focused on uranyl-based phases in which uranium is oxidized to the \(+6\) state and is present as the \(\text{UO}_2^{2+} \) cation. Numerous tests of natural analogs and synthesized samples (for example 2,7,8) on alteration of \(\text{UO}_2 \) reveal uraninite oxide hydrate minerals and uranyl silicates as major products. Also, uranyl phosphates and carbonates can be formed under some groundwater compositions. Mineral stabilities and solubilities determine which solid phases form, and the distribution of uranium between solid and aqueous phases. Recently, it was also shown that some uranyl minerals can incorporate Pu and Np into uranium between solid and aqueous phases. Despite such obvious need for reliable thermodynamic data for uranyl minerals, previously reported data are incomplete and somewhat contradictory. Grenthe et al., followed by Guillaumont et al., compiled and reviewed the chemical thermodynamics of actinide materials and only very few values have been accepted as reliable for hydrated crystalline uranyl oxides, carbonates, phosphates, and silicates. These uranyl minerals are complex, structurally and chemically, with more than 50 phases known, and the synthesis of pure materials and their detailed characterization are not straightforward. Due to nonstoichiometry, their hydrous nature and complex oxidation—reduction behavior, the best choice of thermodynamic measurement methods is a challenge.

For example, Santalova et al. reported enthalpy of formation of dihydrated (meta)schoepite \(\text{UO}_2 \cdot 2\text{H}_2\text{O} \) from solution calorimetry in dilute HF as \(-1840.6\) kJ/mol. Later, Tasker et al. determined the enthalpy of formation of \(\text{UO}_2 \cdot 2\text{H}_2\text{O} \) as \(-1825.4 \pm 2.1\) kJ/mol by calorimetry in more concentrated HF. There were extensive solubility measurements with different techniques on meta-schoepite that resulted in solubility products varying from 4.68 to 6.23. Other uranyl oxide hydrates, becquerelite \(\text{Ca}[(\text{UO}_2)_x\text{O}_y\text{(OH)}_z]_2 \cdot 8\text{H}_2\text{O} \), clarkeite \(\text{Na(UO}_2\text{)O(OH)} \), and compregnacite \(\text{Na}_2[(\text{UO}_2)_8\text{O}_2(\text{OH})_2]_2 \cdot 7\text{H}_2\text{O} \) have not been studied directly by solution calorimetric methods. The solubility data strongly depend on the crystallinity of samples and had not been accurately determined.

Thermodynamic properties of uranyl carbonates are also poorly constrained. There are several reliable solubility measurements for rutherfordine \(\text{UO}_2\text{CO}_3 \) reported, but the enthalpy of formation, \(-1689.6 \pm 1.8\) kJ/mol, accepted by Guillaumont et al., has been calculated from averaged solubility data and an experimentally determined standard entropy \(S^\circ \) value, and not measured directly. Alvan and Williams reported enthalpy and Gibbs free energy of formation for andersonite \(\text{Na}_2\text{Ca}[(\text{UO}_2)_8(\text{CO}_3)_4]_2 \cdot \text{SH}_2\text{O} \) but did not report experimental conditions or details of measurements. Data on other uranyl carbonates are very limited and are restricted only to solubility estimates.

Cordfunke et al. measured the enthalpy of formation of \((\text{UO}_2)_3(\text{PO}_4)_2 \) by solution calorimetry in concentrated \(\text{H}_2\text{SO}_4 \) as \(-5491.3 \pm 3.5\) kJ/mol. With entropy values measured by Barten, the Gibbs free energy of formation of \((\text{UO}_2)_3(\text{PO}_4)_2 \),

Special Issue: Alternative Energy Systems: Nuclear Energy

Received: February 4, 2011
Accepted: November 12, 2011
Revised: October 11, 2011
Published: November 12, 2011
Table 1. Thermodynamic Functions for Formation from Oxides and Elements of Uranyl Minerals, under Standard Temperature and Pressure

<table>
<thead>
<tr>
<th>Phase/Formula</th>
<th>Formula per one uranyl cation</th>
<th>$\Delta H_{\text{f,ref}}$ kJ/mol</th>
<th>$\Delta G_{\text{f,ref}}$ kJ/mol</th>
<th>$\Delta S_{\text{f,ref}}$ J/mol-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>metaschoepite UO$_2$$\cdot$2H$_2$O</td>
<td>UO$_2$(H$_2$O)$_3$</td>
<td>4.4 ± 3.1</td>
<td>−1791.0 ± 3.2</td>
<td>−1632.2 ± 7.4</td>
</tr>
<tr>
<td>β-UO$_2$(OH)$_2$</td>
<td>β-UO$_2$(OH)$_3$</td>
<td>−266.6 ± 2.8</td>
<td>−1536.2 ± 2.8</td>
<td></td>
</tr>
<tr>
<td>bequerelite Ca$_{2.5}$(UO$_2$)$_2$(CO$_3$)$_2$(OH)$_2$$_3$,8H$_2$O</td>
<td>Ca$_{1.5}$(UO$_2$)$_2$(CO$_3$)$_2$(OH)$_2$</td>
<td>−44.6 ± 2.2</td>
<td>−1898.2 ± 2.3</td>
<td>−1717.6 ± 4.4</td>
</tr>
<tr>
<td>clarkeite Na$_2$UO$_2$(CO$_3$)</td>
<td>Na$_2$(UO$_2$)(OH)</td>
<td>−1506.6 ± 4.9</td>
<td>−1724.7 ± 5.1</td>
<td>−1635.1 ± 23.4</td>
</tr>
<tr>
<td>Na-compregnacite</td>
<td>Na$_2$Na$_3$(UO$_2$)$_6$(CO$_3$)(OH)$_2$</td>
<td>−53.5 ± 2.4</td>
<td>−1822.7 ± 2.4</td>
<td>−1674.3 ± 4.1</td>
</tr>
<tr>
<td>curite Pb$_3$(UO$_2$)$_4$(CO$_3$)$_2$(OH)$_2$•2H$_2$O</td>
<td>Pb$_{3.5}$(UO$_2$)$_2$(OH)$_2$</td>
<td>−161.5 ± 4.3</td>
<td>−1645.4 ± 4.3</td>
<td></td>
</tr>
<tr>
<td>studite (UO$_2$)$_2$·4H$_2$O, oxide + H$_2$O</td>
<td>(UO$_2$)$_2$(H$_2$O)$_4$</td>
<td>22.3 ± 3.9</td>
<td>−2344.7 ± 4.0</td>
<td></td>
</tr>
<tr>
<td>studite (UO$_2$)$_2$·4H$_2$O, oxide + H$_2$O</td>
<td>(UO$_2$)$_2$(H$_2$O)$_4$</td>
<td>−75.7 ± 4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rutherfordine UO$_2$CO$_3$</td>
<td>UO$_2$CO$_3$</td>
<td>−99.1 ± 4.2</td>
<td>−1716.4 ± 4.2</td>
<td></td>
</tr>
<tr>
<td>andersonite Na$_2$Ca$_4$(UO$_2$)$_6$(CO$_3$)$_2$(CO$_3$)$_2$(OH)$_2$•2H$_2$O</td>
<td>Na$_2$Ca$_4$(UO$_2$)$_6$(CO$_3$)$_2$(CO$_3$)$_2$(OH)$_2$</td>
<td>−7104.9 ± 9.1</td>
<td>−5939.6 ± 9.1</td>
<td></td>
</tr>
<tr>
<td>grimselite K$_2$Na$_2$UO$_2$(CO$_3$)$_2$·H$_2$O</td>
<td>K$_2$Na$_2$UO$_2$(CO$_3$)$_2$·H$_2$O</td>
<td>−989.3 ± 14.0</td>
<td>−4431.6 ± 15.3</td>
<td></td>
</tr>
<tr>
<td>uranyl phosphates</td>
<td>UO$_2$(PO$_4$)$_2$$\cdot$3H$_2$O</td>
<td>UO$_2$(PO$_4$)$_2$·3H$_2$O</td>
<td>−214.0 ± 3.9</td>
<td>−3232.3 ± 4.0</td>
</tr>
<tr>
<td>(UO$_2$)$_2$(PO$_4$)$_2$$\cdot$3H$_2$O</td>
<td>(UO$_2$)$_2$(PO$_4$)$_2$·3H$_2$O</td>
<td>−227.2 ± 2.3</td>
<td>−2333.7 ± 4.6</td>
<td>−2046.3 ± 12.2</td>
</tr>
<tr>
<td>uranyl silicates</td>
<td>soddyte (UO$_2$)$_2$(Si$_2$O$_5$)$_2$$\cdot$2H$_2$O</td>
<td>(UO$_2$)$_2$(Si$_2$O$_5$)$_2$·2H$_2$O</td>
<td>−711.8 ± 4.3</td>
<td>−2022.7 ± 2.5</td>
</tr>
<tr>
<td>K-boltwoodite K(UO$_2$)$_2$(Si$_2$O$_5$)\cdot1.3H$_2$O</td>
<td>K(UO$_2$)$_2$(Si$_2$O$_5$)\cdot1.3H$_2$O</td>
<td>−238.5 ± 6.0</td>
<td>−27681.6 ± 6.5</td>
<td>−27586.3 ± 3.5</td>
</tr>
<tr>
<td>Na-boltwoodite Na(UO$_2$)$_2$(Si$_2$O$_5$)\cdotH$_2$O</td>
<td>Na(UO$_2$)$_2$(Si$_2$O$_5$)\cdotH$_2$O</td>
<td>−215.9 ± 6.5</td>
<td>−2947.2 ± 4.0</td>
<td>−2725.2 ± 2.6</td>
</tr>
<tr>
<td>uranophane Ca(UO$_2$)$_2$(Si$_2$O$_5$)\cdotH$_2$O</td>
<td>Ca$_{3.5}$(UO$_2$)$_2$(Si$_2$O$_5$)$_3$·H$_2$O</td>
<td>−150.0 ± 4.3</td>
<td>−3399.7 ± 4.0</td>
<td>−3099.3 ± 5.6</td>
</tr>
</tbody>
</table>

The calorimeter is calibrated against the sample is dropped from room temperature directly into the calorimetric solvent. Prior to a each experiment, the completed dissolution of the sample is dropped from room temperature directly into the calorimeter. The measured heat effect is the sum of heat capacity and enthalpy of solution in the calorimetric solvent. Enthalpy of formation at room temperature can be calculated from these data through well-defined thermodynamic cycles referred to the corresponding binary oxides and elements. Table 2 represents an example of a thermodynamic cycle used to calculate enthalpies of formation of soddyite (UO$_2$)$_2$(Si$_2$O$_5$)\cdot2H$_2$O. A custom-built Calvet microcalorimeter with twin design has been used for enthalpy measurements. The high sensitivity of this instrument permits measurements on exceptionally small amounts of sample (5 mg per drop), so not more than 50 mg is needed to collect a complete data set. A version of this calorimeter is now commercially available. The calorimeter is calibrated against the well-known heat content of Al$_2$O$_3$. Prior to each experiment, the complete dissolution of the mineral in 3Na$_2$O·4MoO$_3$ has been confirmed by experiments in a furnace. For calorimetry on uranyl silicates, the final state of silica was experimentally identified as cristobalite.
Table 2. Thermodynamic Cycle for the Formation of Soddyite \((\text{UO}_2)_2(\text{SiO}_4)_3\cdot 2\text{H}_2\text{O}\) from Oxides and Elements

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(\Delta H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{UO}_2)_2(\text{SiO}_4)_3\cdot 2\text{H}_2\text{O})</td>
<td></td>
</tr>
<tr>
<td>(\text{UO}_3) + (2\text{H}_2\text{O}) → ((\text{UO}_2)_2(\text{SiO}_4)_3\cdot 2\text{H}_2\text{O})</td>
<td>(\Delta H_1)</td>
</tr>
<tr>
<td>(\text{SiO}_2) + (\text{H}_2\text{O}) → ((\text{UO}_2)_2(\text{SiO}_4)_3\cdot 2\text{H}_2\text{O})</td>
<td>(\Delta H_2)</td>
</tr>
<tr>
<td>(2\text{UO}_3) + (3\text{SiO}_2) → ((\text{UO}_2)_2(\text{SiO}_4)_3\cdot 2\text{H}_2\text{O})</td>
<td>(\Delta H_3)</td>
</tr>
<tr>
<td>(\text{UO}_3) + (\text{SiO}_2) + (\text{H}_2\text{O}) → ((\text{UO}_2)_2(\text{SiO}_4)_3\cdot 2\text{H}_2\text{O})</td>
<td>(\Delta H_4)</td>
</tr>
</tbody>
</table>

To facilitate dissolution of materials and also maintain the oxidative atmosphere, oxygen gas is constantly bubbled through the solvent. Change of the solvent color to bright yellow indicates that the uranium and molybdenum remain in their initial +6 oxidation state during the measurements. Structural water and carbonate anions vaporize and are expelled from the calorimeter by the flowing gas. The final state is well-defined: dissolved U\(^{6+}\) and other cationic and anionic species, with evolved \(\text{H}_2\text{O}\) and \(\text{CO}_2\). The solutes are present at low concentration so dilution effects need not be considered, and the solution enthalpy does not depend on the amount dissolved or the presence of other solutes.

Table 1 summarizes formation enthalpies for uranyl minerals at room temperature collected via high temperature solution calorimetry.\(^{31-34}\) We report enthalpies of formation from elements and from corresponding oxides. The latter better illustrate energetic trends among the different minerals, since the enthalpies of formation of constituent oxides, which obscure any small differences in energetics, are not included in calculations. All values are normalized per one uranyl unit per formula for easier comparison.

The general structural motif of most uranyl minerals is two-dimensional uranyl polyhedra-based sheets with cations and/or water molecules separating the layers (Figure 1).\(^{15}\) However for each class of materials, layers have different topology. A few minerals deviate from this trend and possess one- or three-dimensional structures. Therefore energetics of uranyl oxides, carbonates, phosphates, and silicates are difficult to compare directly based only on structural considerations. However, we are able to evaluate the contribution of acid—base interactions to the energetics within each class of materials.

Two types of Lewis acid—base interactions can be separated. First, minerals become more stable relative to oxides as acidity of anions increases in the order \(\text{OH}^- < \text{SiO}_2^{4-} < \text{CO}_3^{2-} < \text{PO}_4^{3-}\) and interaction between uranyl cations and those anions becomes more exothermic. Reactions 1–4 demonstrate the relative energetic trend of Lewis interactions for the case of CaO.

\[
\text{CaO} + \text{H}_2\text{O} = \text{Ca(OH)}_2 \quad \Delta H = -97.2 \pm 1.6 \text{ kJ/mol} \\
\text{CaO} + 0.5 \text{SiO}_2 = 0.5\text{CaSiO}_4 \quad \Delta H = -102.1 \pm 2.0 \text{ kJ/mol} \\
\text{CaO} + \text{CO}_2 = \text{CaCO}_3 \quad \Delta H = -210.8 \pm 1.9 \text{ kJ/mol} \\
\text{CaO} + 1/3\text{P}_2\text{O}_5 = 1/3\text{Ca}_3(\text{PO}_4)_2 \quad \Delta H = -268.9 \pm 5.1 \text{ kJ/mol}
\]

Due to the higher acidity of U\(^{6+}\) compared to Ca\(^{2+}\), energetics of interaction of UO\(_3\) with the same acidic oxides as in eqs 1–4 is significantly less exothermic but should follow a similar trend: uranyl phosphates would be the most stable minerals, followed by carbonates, silicates, and then oxides. However, within each class of uranyl materials, enthalpy of formation from oxides is additionally influenced by the interactions between a particular acidic oxide and basic oxide related to cations located to the uranyl sheets.

The most energetically favorable phases are grimselite \(\text{K}_2\text{NaUO}_2\cdot (\text{CO}_3)_3(\text{H}_2\text{O})\) and andersonite \(\text{Na}_2\text{Ca}[(\text{UO}_2)(\text{CO}_3)_3](\text{H}_2\text{O})_3\), both with zero-dimensional structures consisting of isolated uranyl clusters surrounded by carbonate triangles.\(^{31}\) The strong interaction between four basic interlayer cations K\(^+\) and Na\(^+\) (the highest alkali content among all studied materials) with a relatively strong acid, \(\text{CO}_3^{2-}\), leads to strongly negative formation enthalpies from oxides equal to \(-989.3 \pm 14.0 \text{ kJ/mol}.\) Andersonite \(\text{Na}_2\text{Ca}[(\text{UO}_2)(\text{CO}_3)_3](\text{H}_2\text{O})_3\), contains two Na\(^+\) and one less basic Ca\(^{2+}\), thus its enthalpy of formation, \(-710.4 \pm 9.1 \text{ kJ/mol},\) is more positive than that of grimselite. Enthalpy of formation of rutherfordite \(\text{UO}_2\text{CO}_3\) with layered structure of uranyl hexagons and carbonate triangles, where no interlayer cations are involved, \(-99.1 \pm 4.2 \text{ kJ/mol},\) reflects only the uranyl—carbonate acid—base energetic contribution, and is less exothermic than values for grimselite and andersonite.\(^{31}\)

Uranyl phosphate, \(\text{UO}_2(\text{PO}_4)_{2/3}(\text{H}_2\text{O})_{4/3}\), also consists of only electro-neutral layers. However, the different topology of the layers, stronger uranyl—phosphate interactions compared to uranyl—carbonate, and the exothermic contribution of water
incorporation result in a more exothermic enthalpy of formation, -227.2 ± 2.3 kJ/mol, compared to rutherfordine. Another reported uranyl phosphate $\text{UO}_2\text{HPO}_4\text{(H}_2\text{O})_3$, also does not incorporate any cations into the structure and thus has a smaller Lewis contribution to the formation enthalpy. Its uranyl phosphate layers have the same autunite topology as in $\text{UO}_2\text{(PO}_4\text{)}_{2/3}\text{(H}_2\text{O})_{1/3}s$, but are in turn connected by uranyl pentagonal bipyramids into a framework structure. The formation of this more rigid structure is the reason for more exothermic formation enthalpy, -241.0 ± 3.9 kJ/mol, compared to layered $\text{UO}_2\text{HPO}_4\text{(H}_2\text{O})_3$. The uranyl silicates from oxides are also plotted in Figure 2 as a function of oxide acidity. This approach eliminates the need to rely on knowledge of the thermodynamic properties of the aqueous uranyl species that exist under higher pH conditions, and thereby improves the accuracy of the thermodynamic calculations. Solubility experiments of uranyl minerals were conducted primarily under the low pH conditions at which UO_2^{2+} is the dominant aqueous uranyl species.

Solubility Measurements. In our solubility studies, measurements were conducted primarily under the low pH conditions at which UO_2^{2+} is the dominant aqueous uranyl species. This approach eliminates the need to rely on knowledge of the thermodynamic properties of the aqueous uranyl species that exist under higher pH conditions, and thereby improves the accuracy of the thermodynamic calculations. Successful extraction of thermodynamic data from solubility measurements requires a range of measurements or controls on the experimental systems: (1) rigorous demonstration of the attainment of equilibrium through solubility reversals; (2) measurements of the equilibrium pH and total aqueous equilibrium concentrations of all mineral-forming cations in the system, allowing for the calculation of the speciation of all of the cations in solution; (3) ionic strength control or measurement; and (4) determination that secondary mineral phases do not form during experimentation.

In a typical solubility experiment, synthesized uranyl mineral powder was placed in contact with a fixed ionic strength solution, and the pH of the suspension was adjusted to a desired value using concentrated acid or base. Ionic strength was buffered using NaClO$_4$. Shorter dissolution times or oversaturation of the experimental solutions were achieved by spiking the initial aqueous phase with dissolved uranium and other mineral-forming cations. Solubility experiments of uranyl silicates involved introduction of silica gel into the experimental systems to buffer aqueous Si concentrations and to ensure rapid attainment of equilibrium with respect to dissolved Si. The experimental solutions were agitated, and the aqueous phase was sampled repeatedly as a function of time until steady-state conditions were attained. These samples were then analyzed for dissolved total metal concentrations, using inductively coupled plasma optical emission spectroscopy (ICP-OES). The solid phases were
characterized by powder X-ray diffraction and by FTIR-ATR spectrometry both before and after the experiments to check for phase stability under the experimental conditions. The ATR permitted collection of IR spectra for sample areas as small as 12 μm² and was used to systematically search for impurity phases that may not have been detected by XRD.

As an example, the equilibrium constant for the dissolution reaction of soddyite

\[
4H^+ + (UO_2)_2(SiO_4)(H_2O)_2(\text{soddyte}) = 2UO_2^{2+} + H_4SiO_4 + 2H_2O
\]

(5)
can be expressed as

\[
K_{(1)} = \frac{a^2UO_2^{2+}a_{H_4SiO_4}}{a^4H^+}
\]

(6)

where \(a\) represents the activity of the subscripted aqueous species. For experiments conducted below pH 5 where UO_2^{2+} and H_4SiO_4 species dominate the total dissolved uranium and silica budgets, respectively, the value of \(K_{(1)}\) can be directly measured by determining the equilibrium pH and concentrations of UO_2^{2+} and H_4SiO_4. Standard states for minerals and for H_2O are defined to be the pure phases at the pressure and temperature of interest, and the standard state for aqueous species is defined to be a hypothetical one molal solution that behaves as if it is infinitely dilute. Because we buffer the ionic strength with a relatively inert background electrolyte such as NaClO_4, we can convert the measured molality of UO_2^{2+} to an activity using the extended Debye–Hückel equation.\(^{53}\) The activity of H^+ is directly determined through pH measurements.

The equilibrium constant directly yields a value for the change in standard state Gibbs free energy for the reaction, \(\Delta G^{\circ}_{\text{reaction}}\):

\[
\log K_{(1)} = \frac{-\Delta G^{\circ}_{\text{reaction}}}{2.303RT}
\]

(7)

where \(R\) and \(T\) represent the gas constant and absolute temperature, respectively.

The parameter \(\Delta G^{\circ}_{\text{reaction}}\) is defined as follows:

\[
\Delta G^{\circ}_{\text{reaction}} = 2\Delta G^{\circ}_{f(UO_2^{2+})} + \Delta G^{\circ}_{f(H_4SiO_4)} + 2\Delta G^{\circ}_{f(H_2O)} - 4\Delta G^{\circ}_{f(H^+)} - \Delta G^{\circ}_{f(\text{soddyte})}
\]

(8)

where \(\Delta G^{\circ}_{f(solid)}\) represents the standard Gibbs free energy of formation at room temperature for the species in the parentheses. Because the values of \(\Delta G^{\circ}_{f(solid)}\) are well-established for liquid H_2O and for all of the major aqueous species, the experimental determination of \(\Delta G^{\circ}_{\text{reaction}}\) enables us to calculate \(\Delta G^{\circ}_{f(\text{soddyte})}\) directly. Standard Gibbs free energies of formation for other uranyl minerals, obtained in an approach similar to that described for soddyite, under standard state, are summarized in Table 1.

Although in theory only one solubility measurement, conducted at a single ionic strength, is sufficient to determine the value of \(K_{(1)}\), significant improvement in the uncertainty associated with these values is obtained by conducting the solubility measurements both as a function of pH and as a function of ionic strength. The measurements conducted as a function of pH not only provide additional constraints on the thermodynamic values, but they also constrain the stoichiometry of the dissolution reaction. Because reaction 5 depends on pH, a fixed relationship exists between the extent of dissolution in terms of the uranyl concentration and solution pH. Thus, the solubility measurements conducted as a function of pH enable us to determine whether such a relationship exists.

Although the direct determination of uranyl mineral solubilities is of use, the extraction of standard Gibbs free energies of formation from solubilities is perhaps of greater importance in modeling uranyl mineral stabilities and solubilities under conditions not directly studied in the laboratory. The calculated Gibbs free energy values can be used to determine relative stabilities of uranyl minerals under a wide range of conditions of environmental and geological interest. The Gibbs free energy values can also be used to calculate equilibrium constant values for any reaction involving the studied uranyl mineral phases, enabling estimation of the solubility of any mineral assemblage for different conditions. Because it is impossible to measure uranium concentrations in equilibrium with all uranyl phases under all conditions in the laboratory, it is crucial to be able to estimate these concentrations in order to assess the mobility of uranium in systems not directly studied in the laboratory. The thermodynamic properties that we determined enable such extrapolation.

Environmental Applications. Groundwater, where uranyl minerals precipitate, is typically rich in silica, carbonate, and Ca^{2+}; thus the stability diagram for CaO–SiO_2–UO_2–H_2O system is of great importance. A number of diagrams have been previously reported. Finch and Ewing\(^{39}\) calculated an activity–activity diagram based on the data from solubility measurements at undersaturated conditions with the stability field of becquerelite suggested from petrographic results. Prikryl\(^{40}\) developed the three-dimensional log [UO_2^{2+}/(H^+)^2] vs Log [(Ca^{2+})/(H^+)^2] vs Log [SiO_2(aq)] diagram for uranyl oxides and silicates. Stability fields recommended by Finch and Ewing\(^{39}\) are as well as predicted by Chen et al.\(^{40}\) are also shown. Predicted values from Finch\(^{39}\) and Chen et al.\(^{40}\) are analyzed in detail by Chen et al.\(^{40}\) and therefore are not marked.

The diagram (Figure 3) confirms the conclusions of Chen et al.\(^{40}\) and mineral stability relationships observed in nature. Metaschoepite is a metastable phase that is replaced by uranyl silicates if silica is dissolved in groundwater in any significant amount. Stability of metaschoepite is limited to lower Si concentrations compared to that calculated by Chen et al.\(^{40}\) thus explaining the favorable formation of soddyite for all groundwater compositions at the low Ca^{2+} contents assumed by Chen et al. Soddyite and uranophane are the most abundant minerals that form in contact with groundwater of almost any composition. Becquerelite is stable under more acidic conditions and low silica concentration, but can coexist with soddyite and uranophane; there are certain, but rare reports of groundwater with chemistry favorable for such formations.\(^{45}\) A few other uranyl silicates, such as weeksite, are known to occur...
naturally and thermodynamic data for these minerals need to be determined.

There are not enough solubility data for uranyl carbonates to revise their stability diagram. However, relationships between metaschoepite and becquerelite found for the CaO–SiO₂–UO₃–H₂O system will also extend to CaO–CO₂–UO₃–H₂O. Given that metaschoepite stability is limited to log \((a(\text{Ca}^{2+})/a(\text{H}^+)^2) = 7.2\), becquerelite formation becomes favorable for almost all groundwater compositions shown by Chen et al.³⁰

Uranyl phosphates have the lowest solubilities of the uranyl minerals studied and thus their stability and favorable formation conditions are critical. \(\text{UO}_₃\text{HPO}_₄\cdot3\text{H}_₂\text{O}\) can be formed according to:

\[
\begin{align*}
\text{H}^+ + (\text{UO}_₃\text{H})_²(\text{PO}_₄)_²\cdot4\text{H}_₂\text{O} &= \text{UO}_₂\text{HPO}_₄\cdot3\text{H}_₂\text{O} + 2\text{UO}_₂^{2+} + \text{PO}_₄^{3-} + \text{H}_₂\text{O} \\
\end{align*}
\]

and therefore its formation depends on pH, \(\text{UO}_₂^{2+}\), and \(\text{PO}_₄^{3-}\) activities. At pH values lower than 4, \((\text{UO}_₂)_²(\text{PO}_₄)_²\cdot4\text{H}_₂\text{O}\) is stable at any uranyl cation activities above 10⁻¹³. If pH values are above 5, \(\text{UO}_₂\text{HPO}_₄\cdot3\text{H}_₂\text{O}\) can become the more stable phase due to formation of uranyl aqueous complexes and, as a result, significant decrease of \(\text{UO}_₂^{2+}\) activity. When \(\text{Ca}^{2+}\) is present, \(\text{Ca}(\text{UO}_₂)_²(\text{PO}_₄)_²\cdot3\text{H}_₂\text{O}\) can form according to the reaction

\[
\begin{align*}
(\text{UO}_₂)_²(\text{PO}_₄)_²\cdot4\text{H}_₂\text{O} + \text{Ca}^{2+} &= \text{UO}_₂^{2+} + \text{H}_₂\text{O} + \text{Ca}(\text{UO}_₂)_²(\text{PO}_₄)_²\cdot3\text{H}_₂\text{O} \\
\end{align*}
\]

but only if the activity of \(\text{Ca}^{2+}\) is considerably larger (more than an order of magnitude) than the activity of \(\text{UO}_₂^{2+}\). Thus, \((\text{UO}_₂)_²(\text{PO}_₄)_²\cdot4\text{H}_₂\text{O}\) is more stable than \(\text{Ca}(\text{UO}_₂)_²(\text{PO}_₄)_²\cdot3\text{H}_₂\text{O}\) in \(\text{Ca}^{2+}\)-rich waters only if they are highly contaminated with uranium.

CONCLUSIONS

The experimental data summarized here yield an internally consistent set of thermodynamic properties for a wide range of environmentally important uranyl minerals. Although the thermodynamic properties of only some of the most geologically and environmentally important and abundant uranyl phases have been determined, the creation of this database represents a crucial first step toward quantitative assessment of uranium mobility in oxidized geologic systems. These thermodynamic data can be used not only to determine the concentration of uranium that exists in equilibrium with secondary uranyl minerals in groundwater, or ore-weathering, or spent nuclear fuel repository systems, but also to determine which of these phases are the most stable under a wide range of conditions of geologic and environmental interest. The quality and extent of the thermodynamic data set for uranyl phases have significantly improved over the past few years, but much experimental work remains to be done. In particular, experimental studies of uranyl silicates need to be expanded, and solubilities of uranyl carbonates must be included in the data set as well. All studies to date have involved pure end-member uranyl phases, but incorporation of other elements into these phases may lead to nonideal behavior that affects mineral stabilities and solubilities, and these effects must be quantified as well. In general, the accuracy of models of the fate and transport of uranium in environmental and geologic systems is only as good as the thermodynamic data set that forms its foundation. This data set has vastly grown over the past decade but still is incomplete, and more research is needed to yield a complete understanding of the behavior of uranium in oxidizing systems.

AUTHOR INFORMATION

Corresponding Author

*E-mail: anavrotsky@ucdavis.edu.

ACKNOWLEDGMENT

Funding for the initial stages of this project was provided by a U.S. Department of Energy, Office of Science and Technology and International (OST&I) grant under the Source Term Thrust program. Further material is based upon work supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC0001089.

REFERENCES

(4) Peacock, E. C.; Pribyl, J. D.; Murphy, W. M.; Leslie, B. W. Alteration of uraninite from the Nopal I deposit, Pena Blanca District, Chihuahua, Mexico, compared to degradation of spent nuclear fuel in the proposed U.S. high-level nuclear waste repository at Yucca Mountain, Nevada. Appl. Geochem. 1994, 9 (6), 713–32.

