Multiple Blockholders, Price Informativeness, and Firm Value

Alex Edmans, Wharton Gustavo Manso, MIT Sloan

Notre Dame Finance Seminar

October 12, 2007
Introduction

What is the optimal blockholder structure that maximizes the effectiveness of corporate governance?

Traditional view: blockholders govern through intervention ("voice")

- Few, concentrated stakes are optimal to minimize free-rider problems and maximize intervention incentives
- But most firms have multiple small blockholders (Zwiebel (1995), Barca and Becht (2001), Faccio and Lang (2002), Maury and Pajuste (2005), Holderness (2007))

This paper provides a potential justification for multiple blockholder structures
MBs increase the effectiveness of a second governance mechanism: trading ("exit")
- Managerial effort improves fundamental value, but manager is paid according to stock price
- Trading causes prices to reflect fundamental value, rewarding effort ex post

Dynamic consistency issues: once effort has been exerted, blockholders are only concerned with maximizing trading profits
- A single blockholder will strategically limit her order, reducing price informativeness
- Multiple blockholders trade competitively, as in a Cournot oligopoly

* Here, co-ordination problems help, by serving as a commitment device to reward the manager ex post

Differences with Edmans (2007):
- Considers both “voice” and “exit”, and the trade-offs between them
- Fundamental agency problem is shirking, not myopia
- Derives multiple blockholders as an optimal structure, and analyzes the determinants of the efficient number
The Model

- Manager owns α, l blockholders collectively own β (i.e. β/l each)
- $t = 1$: manager exerts effort a, each blockholder exerts effort b_i (all at unit cost)
 - Firm value: $\widetilde{v} = \phi_a \log a + \phi_b \log \sum_i b_i + \tilde{\eta}$
 - a is private (critical), b_i is public (non-critical)
- $t = 2$: trading by blockholders and liquidity investors
 - Each blockholder observes \widetilde{v} perfectly and demands $x_i(\widetilde{v})$
 - Noise traders demand $\tilde{e} \sim N(0, \sigma_{\tilde{e}}^2)$
 - Market maker observes order flow $\tilde{y} = \sum_i \tilde{x}_i + \tilde{e}$ and sets $\tilde{p} = E[\tilde{v}|\tilde{y}]$
- Manager maximizes $\alpha \tilde{p} - a$
- Blockholder maximizes individual trading profit + value of shares - cost of effort
The Trading Stage

- Proceed by backward induction: take a and b_i as given
- Unique linear equilibrium is symmetric:

$$x_i(\tilde{v}) = \gamma(\tilde{v} - \phi_a \log a - \phi_b \log \sum_i b_i) \quad \forall i$$

$$p(\tilde{y}) = \phi_a \log a + \phi_b \log \sum_i b_i + \lambda \tilde{y},$$

- Each blockholder’s trading profits are

$$\frac{1}{\sqrt{l(l+1)}} \sigma_\eta \sigma_\epsilon$$

- Price informativeness is negatively related to

$$\sigma_1 \equiv \text{Var}(\tilde{v}|\tilde{p}) = \frac{1}{l+1} \sigma_\eta$$
The Action Stage

- Optimal actions:

\[a = \phi_a \alpha \left(\frac{l}{l+1} \right) \]

\[b_i = \phi_b \beta \left(\frac{1}{l} \right)^2 \]

\[\sum_i b_i = \phi_b \beta \left(\frac{1}{l} \right) \cdot \sum_i b_i \]

- \(\sum_i b_i \) is decreasing in \(l \)
 - Blockholders exert positive externalities *on the firm*, which they do not consider
 - “Too little” intervention: standard free-rider problem
a is increasing in \(I \)

- Blockholders exert negative externalities on each other, which they do not consider
- “Too much” trading
 * Reduces informed trading profits, hurting blockholders in aggregate
 * Increases price informativeness
- But firm value does not depend on informed trading profits, but instead price informativeness
 * Co-ordination problems commit to “too much” trading, creating a dynamically consistent reward mechanism for managerial effort
Optimum for firm value: \(I^* = \max \left[1, \frac{\phi_a - \phi_b}{\phi_b} \right] \)

\(I^* \) depends on trade-off between effect on blockholder effort ("voice") and managerial effort (via "exit")

- \(\phi_b \) depends on nature of blockholders' expertise
 - High if forward-looking ("prospective") information, e.g. venture capital
 - Low if backward-looking ("retrospective") information, e.g. rentier capital
 - High if strong control rights (holding \(\beta \) constant), e.g. foreign blockholders

- \(\phi_a \) depends on manager's scope to improve firm value
 - High in growth industries, low in regulated industries

Weak governance increases both \(\phi_a \) and \(\phi_b \) and thus has ambiguous effects.
Social optimum considers:
- Cost of managerial effort (reducing I_{soc}^* relative to I^*)
- Cost of blockholder effort (increasing I_{soc}^* relative to I^*)

Private optimum considers:
- $\beta\%$ of increase in firm value
- Cost of blockholder effort (increasing I_{priv}^* relative to I^*)
- Informed trading profits (reducing I_{priv}^* relative to I^*)
Effect of information asymmetry
 – Likely to reduce potency of exit and thus I^*

Effect of liquidity
 – Currently, σ_{ϵ} is irrelevant, but may become significant if costly information acquisition
 – Likely to increase potency of exit and thus I^*

Asymmetric blockholders

Further suggestions?