Can Information Heterogeneity Explain the Exchange Rate Determination Puzzle? ¹

Philippe Bacchetta
Study Center Gerzensee
University of Lausanne
CEPR

Eric van Wincoop
University of Virginia
NBER

March 24, 2004

¹We would like to thank Bruno Biais, Gianluca Benigno, Margarida Duarte, Ken Froot, Harald Hau, Richard Lyons, Elmar Mertens, and seminar participants at the NBER IFM fall meeting, a CEPR-RTN workshop in Dublin, ESSFM in Gerzensee, SIFR Conference in Stockholm, the New York Fed, the Board of Governors, the ECB, CEMFI, and the Universities of Harvard, Princeton, Virginia, Boston College, UQAM, and Lausanne for comments. Bacchetta’s work on this paper is part of a research network on ‘The Analysis of International Capital Markets: Understanding Europe’s role in the Global Economy,’ funded by the European Commission under the Research Training Network Program (Contract No. HPRN-CT-1999-00067).
Abstract

Empirical evidence shows that observed macroeconomic fundamentals have little explanatory power for nominal exchange rates (the exchange rate determination puzzle). On the other hand, the recent “microstructure approach to exchange rates” has shown that most exchange rate volatility at short to medium horizons is related to order flows. In this paper we introduce symmetric information dispersion about future fundamentals in a dynamic rational expectations model in order to explain these stylized facts. Consistent with the evidence the model implies that (i) observed fundamentals account for little of exchange rate volatility in the short to medium run, (ii) over longer horizons the exchange rate is closely related to observed fundamentals, (iii) exchange rate changes are a weak predictor of future fundamentals, and (iv) the exchange rate is closely related to order flow over both short and long horizons.
I Introduction

The poor explanatory power of existing theories of the nominal exchange rate is most likely the major weakness of international macroeconomics. Meese and Rogoff [1983] and the subsequent literature have found that a random walk predicts exchange rates better than macroeconomic models in the short run. Lyons [2001] refers to the weak explanatory power of macroeconomic fundamentals as the “exchange rate determination puzzle”\(^1\). This puzzle is less acute for long-run exchange rate movements, since there is extensive evidence of a much closer relationship between exchange rates and fundamentals at horizons of two to four years (e.g., see Mark [1995]). Recent evidence from the microstructure approach to exchange rates suggests that investor heterogeneity might play a key role in explaining exchange rate fluctuations. In particular, Evans and Lyons [2002a] show that most short-run exchange rate volatility is related to order flow, which in turn is associated with investor heterogeneity.\(^2\) Since these features are not present in existing theories, a natural suspect for the failure of current models to explain exchange rate movements is the standard hypothesis of a representative agent.

The goal of this paper is to present an alternative to the representative agent model that can explain the exchange rate determination puzzle and the evidence on order flow. We introduce heterogenous information into a standard dynamic monetary model of exchange rate determination. There is a continuum of investors that differ in two respects. First, they have symmetrically dispersed information about future macroeconomic fundamentals.\(^3\) Second, they face different exchange rate risk exposure associated with non-asset income. The exposure is private information and leads to hedge trade whose aggregate is unobservable. Our main finding is that information heterogeneity disconnects the exchange rate from ob-

\(^1\)The exchange rate determination puzzle is part of a broader set of exchange rate puzzles that Obstfeld and Rogoff [2001] have called the exchange rate disconnect puzzle. This also includes the lack of feedback from the exchange rate to the macro economy and the excess volatility of exchange rates (relative to fundamentals).

\(^2\)See also Rime [2001], Froot and Ramadorai [2002], Evans and Lyons [2002b] or Hau et al. [2002].

\(^3\)We know from extensive survey evidence that investors have different views about the macroeconomic outlook. There is also evidence that exchange rate expectations differ substantially across investors. See Chionis and MacDonald [2002], Ito [1990], Elliott and Ito [1999], and MacDonald and Marsh [1996].
served macroeconomic fundamentals in the short run, while it becomes closely connected to observed fundamentals in the long-run. At the same time it leads to a close link between the exchange rate and order flow over all horizons.

Our modeling approach integrates several strands of literature. First, it has in common with most of the existing (open economy) macro literature that we adopt a fully dynamic general equilibrium model, leading to time-invariant second moments. Second, it has in common with the noisy rational expectations literature in finance that the asset price (exchange rate) aggregates private information of individual investors, with unobserved supply shocks preventing average private signals from being fully revealed by the price. The latter are modeled endogenously as hedge trades in our model. Third, it has in common with the microstructure literature of the foreign exchange market that we model how private information is transmitted to the market through order flow.

Most of the models in the noisy rational expectations literature and microstructure literature are static or two-period models. This makes them ill-suited to address the disconnect between asset prices and fundamentals, which has a dynamic dimension since the disconnect is much stronger at short horizons. Even the few dynamic rational expectation models in the finance literature cannot be applied in our context. Wang [1993, 1994] develops an infinite horizon noisy rational expectations model. There are only two types of investors, one of which can fully observe the variables affecting the equilibrium asset price. We believe that it is more appropriate to consider cases where no class of investors has superior information and where there is broader dispersion of information. He and Wang [1995] make a step in this direction, but they only examine an asset with a single payoff at a terminal date.

For the dynamic dimension of our paper, we rely on the important paper by Townsend [1983]. Townsend analyzed a business cycle model with symmetrically dispersed information. As is the case in our model, the solution exhibits infinitely

\footnote{Some recent papers in the exchange rate literature have introduced exogenous noise in the foreign exchange market. However, they do not consider information dispersion about future macro fundamentals. Examples are Hau [1998], Jeanne and Rose [2002], Devereux and Engel [2002], Kollman [2002], and Mark and Wu [1998]. Hau and Rey [2002] or Brennan and Cao [1997] introduce heterogeneity between domestic and foreign investors.}

\footnote{See Brunnermeier [2001] for an overview.}
higher order expectations (expectations of other agents’ expectations).6 We adapt Townsend’s solution procedure to our model. The only application to asset pricing we are aware of is Singleton [1987], who applies Townsend’s method to a model for government bonds with a symmetric information structure.7

Noisy rational expectations models are not explicit about how private information reaches the market and the price is set. It is not hard though to interpret the equilibrium from such models as the outcome of an order-driven auction market, whereby market orders based on private information hit an outstanding limit order book. This characterization resembles the electronic trading system that nowadays dominates the foreign exchange market. We define limit orders as orders that are conditional on public information, including the price. These orders are submitted before the equilibrium price is known. They take into account the information content of the price. Market orders are associated with private information and are therefore equal to the component of demand that is orthogonal to public information (other than the yet unknown exchange rate). Order flow is equal to net market orders. Private information is then transmitted to the market through order flow. Public information leads to a change in price without any actual trade. Not surprisingly, the weak relationship in the model between short-run exchange rate fluctuations and publicly observed fundamentals is closely mirrored by the close relationship between exchange rate fluctuations and order flow.8

6Subsequent contributions have been mostly technical, solving the same model as in Townsend [1983] with alternative methods. See Kasa [2000] and Sargent [1991]. Probably as a result of the technical difficulty in solving these models, the macroeconomics literature has devoted relatively little attention to heterogeneous information in the last two decades. This contrasts with the 1970s where, following Lucas [1972], there had been active research on rational expectations and heterogeneous information (e.g., see King, 1982). Recently, information issues in the context of price rigidity have again been brought to the forefront in contributions by Woodford [2001] and Mankiw and Reis [2002].

7In Singleton’s model there is no information dispersion about the payoff structure on the assets (in this case coupons on government bonds), but there is private information about whether noise trade is transitory or persistent. The uncertainty is resolved after two periods.

8In recent work closely related to ours, Evans and Lyons [2004] also introduce microstructure features in a dynamic general equilibrium model in order to shed light on exchange rate puzzles. There are three important differences in comparison with our approach. First, they adopt a quote-driven market, while we model an order-driven auction market. Second, they assume that all investors within one country have the same information. There is asymmetric information across countries. Third, theirs is not a noisy rational expectations model. There are no trades
The dynamic implications of the model for the relationship between the exchange rate, observed fundamentals and order flow can be understood as follows. Rational confusion plays an important role in disconnecting the exchange rate from observed fundamentals in the short-run. Investors do not know whether an increase in the exchange rate is driven by an improvement in aggregate private signals, i.e., future fundamentals, or an increase in unobserved hedge trade. This implies that unobserved hedge trades may have a large impact on the exchange rate since they are confused with changes in future observable fundamentals.\(^9\) We show that a small amount of hedge trade can become the dominant source of exchange rate volatility when information is heterogeneous, while it has practically no effect on the exchange rate when investors have common information. Analogous to this, investors do not know whether observed order flow is driven by hedge trade or private information about future fundamentals. The private information content of order flow leads to a larger impact of order flow on the exchange rate.

In the long-run there is a strong relationship between the exchange rate, observed fundamentals and cumulative order flow. This can be understood as follows. First, the private information about future fundamentals that is aggregated into the price through order flow eventually becomes public knowledge as the future fundamentals are observed. It follows that when the fundamental has a permanent component the impact of order flow on the price is permanent as well. Second, the rational confusion gradually dissipates as investors learn more about future fundamentals.\(^10\) The impact of unobserved hedge trades on the equilibrium price therefore gradually weakens.

The remainder of the paper is organized as follows. Section II describes the model and solution method. Section III considers a special case of the model in generating unobservable supply shocks. As a result, the exchange rate fully reveals all private information after one or two trading rounds.

\(^9\)The basic idea of rational confusion can already be found in the noisy rational expectation literature. For example, Gennette and Leland [1990] and Romer [1993] argued that such rational confusion played a critical role in amplifying non-informational trade during the stock-market crash of October 19, 1987.

\(^10\)Another recent paper on exchange rate dynamics where learning plays an important role is Gourinchas and Tornell [2004]. In that paper, in which there is no investor heterogeneity, agents learn about the nature of interest rate shocks (transitory or persistent), but there is an irrational misperception about the second moments in interest rate forecasts that never goes away.
order to develop intuition for our key results. Section IV discusses the implications of dynamic features of the model. Section V presents numerical results based on the general dynamic model and Section VI concludes.

II A Monetary Model with Information Dispersion

II.A Basic Setup

Our model contains the three basic building blocks of the standard monetary model of exchange rate determination: (i) money market equilibrium, (ii) purchasing power parity, and (iii) interest rate parity. We modify the standard monetary model by assuming incomplete and dispersed information across investors. Before describing the precise information structure, we first derive a general solution to the exchange rate under heterogeneous information, in which the exchange rate depends on higher order expectations of future macroeconomic fundamentals. This generalizes the standard equilibrium exchange rate equation that depends on common expectations of future fundamentals.

Both observable and unobservable fundamentals affect the exchange rate. The observable fundamental is the ratio of money supplies and we assume that investors have heterogeneous information about future money supply. The unobservable fundamental takes the form of an aggregate hedge against non-asset income in demand for foreign exchange. This unobservable element introduces a noise in the foreign exchange market in the sense that it prevents investors from inferring average expectations about future money supplies from the price.11 This trade also affects the risk-premium in the interest parity condition.

There are two economies. They produce the same good, so that purchasing power parity holds:

\[p_t = p_t^* + s_t \tag{1} \]

Local currency prices are in logs and \(s_t \) is the log of the nominal exchange rate.

11For alternative modeling of 'noise' from rational behavior, see Wang [1994], Dow and Gorton [1995], and Spiegel and Subrahmanyam [1992].
There is a continuum of investors in both countries on the interval \([0,1]\). We assume that there are overlapping generations of agents that live for two periods and make only one investment decision. This assumption significantly simplifies the presentation, helps in providing intuition, and allows us to obtain an exact solution to the model.\(^{12}\)

Investors in both economies can invest in four assets: domestic money, nominal bonds of both countries with interest rates \(i_t\) and \(i^*_t\), and a technology with fixed real return \(r\) that is in infinite supply. We assume that one economy is large and the other infinitesimally small. Bond market equilibrium is therefore entirely determined by investors in the large country, on which we will focus. We also assume that money supply in the large country is constant. It is easy to show that this implies a constant price level \(p_t\) in equilibrium, so that \(i_t = r\). For ease of notation, we just assume a constant \(p_t\) below. Money supply in the small country is stochastic.

The wealth \(w^i_t\) of investors born at time \(t\) is given by a fixed endowment. At time \(t + 1\) these investors receive the return on their investments plus income \(y^i_{t+1}\) from time \(t + 1\) production. We assume that production depends both on the exchange rate and on real money holdings \(\tilde{m}^i_t\) through the function \(y^i_{t+1} = \lambda^i_t s_{t+1} - \tilde{m}^i_t (\ln(\tilde{m}^i_t) - 1)/\alpha\). The coefficient \(\lambda^i_t\) measures the exchange rate exposure of the non-asset income of investor \(i\). We assume that \(\lambda^i_t\) is time varying and known only to investor \(i\). This will generate an idiosyncratic hedging term. Agent \(i\) maximizes

\[
-E^i_t e^{-\gamma c^i_{t+1}}
\]

subject to

\[
c^i_{t+1} = (1 + i_t)w^i_t + (s_{t+1} - s_t + i^*_t - i_t)b^i_{F,t} - i_t \tilde{m}^i_t + y^i_{t+1}
\]

where \(b^i_{F,t}\) is invested in foreign bonds and \(s_{t+1} - s_t + i^*_t - i_t\) is the log-linearized excess return on investing abroad.

\(^{12}\)In an earlier version of the paper, Bacchetta and van Wincoop (2003), we also consider an infinite horizon version. While this significantly complicates the solution method, numerical results are almost identical as for the case of overlapping generations of two-period lived investors.

\(^{13}\)By introducing money through production rather than utility we avoid making money demand a function of consumption, which would complicate the solution.
Combining the first order condition for money holdings with money market equilibrium in both countries we get

\[m_t - p_t = -\alpha i_t \]
(2)

\[m_t^* - p_t^* = -\alpha i_t^* \]
(3)

where \(m_t \), and \(m_t^* \) are the logs of domestic and foreign nominal money supply.

The demand for foreign bonds by investor \(i \) is:

\[b_i^{Ft} = \frac{E_i^t(s_{t+1}) - s_t + i_t^* - i_t}{\gamma \sigma_t^2} - b_t^i \]
(4)

where the conditional variance of next period’s exchange rate is \(\sigma_t^2 \), which will the same for all investors in equilibrium. The hedge against non-asset income is represented by \(b_t^i = \lambda_i^t \).

We assume that the exchange rate exposure is equal to the average exposure plus an idiosyncratic term: \(\lambda_i^t = \lambda_t + \varepsilon_i^t \). We will only consider the limiting case where the variance of \(\varepsilon_i^t \) approaches infinity, so that knowing one’s own exchange rate exposure provides no information about the average exposure. This assumption is only made for convenience. The results in the paper will not qualitatively change when we assume a finite, but positive, variance of \(\varepsilon_i^t \). The key assumption is that the aggregate hedge component \(\lambda_t \) is unobservable. We assume that the average exposure \(\lambda_t \) changes over time, so that the aggregate hedge component \(b_t = \lambda_t \) follows an AR(1) process:

\[b_t = \rho b_{t-1} + \varepsilon_t^b \]
(5)

where \(\varepsilon_t^b \sim N(0, \sigma_t^2) \). While \(b_t \) is an unobserved fundamental, the assumed autoregressive process is known by all agents.

\[\text{II.B Market Equilibrium and Higher Order Expectations} \]

Since bonds are in zero net supply, market equilibrium is given by \(\int_0^1 b_{F,t}^i di = 0 \). One way to reach equilibrium is to have a Walrasian auctioneer to whom investors submit their demand schedule \(b_{F,t}^i \). However, it is possible to introduce a richer

\[^{14}\text{Here we implicitly assume that } s_{t+1} \text{ is normally distributed. We will see in section II.D that the equilibrium exchange rate indeed has a normal distribution.} \]
microstructure in the foreign exchange market. We show in the next section that we can have a structure with limit orders and market orders that give the exact same equilibrium as the Walrasian auctioneer. In that case we can relate the exchange rate to order flow.

Market equilibrium yields the following interest arbitrage condition:

$$E_t(s_{t+1}) - s_t = i_t - i^*_t + \gamma \sigma^2_t b_t$$ \hspace{1cm} (6)

where E_t is the average rational expectation across all investors. The model is summarized by (1), (2), (3), and (6). Other than the risk-premium in the interest rate parity condition associated with non-observable trade, these equations are the standard building blocks of the monetary model of exchange rate determination.

Defining the observable fundamental as $f_t = (m_t - m^*_t)$, in Appendix A we derive the following equilibrium exchange rate:

$$s_t = \frac{1}{1 + \alpha} \sum_{k=0}^{\infty} \left(\frac{\alpha}{1 + \alpha} \right)^k E_t^k \left(f_{t+k} - \alpha \gamma \sigma^2_{t+k} b_{t+k} \right)$$ \hspace{1cm} (7)

where $E_t^0(x_t) = x_t$, $E_t^1(x_{t+1}) = E_t(x_{t+1})$ and higher order expectations are defined as

$$E_t^k(x_{t+k}) = E_t E_{t+1} E_{t+2} \ldots E_{t+k-1}(x_{t+k}).$$ \hspace{1cm} (8)

Thus, the exchange rate at time t depends on the fundamental at time t, the average expectation of the fundamental at time $t + 1$, the average expectation of the average expectation of the fundamental at $t + 2$, etc. The law of iterated expectations does not apply to average expectations. For example, $E_t E_{t+1}(s_{t+2}) \neq E_t(s_{t+2})$.

15 This point is developed further below. See also Allen, Morris, and Shin [2002] for a discussion in a simpler setting.

16 Notice that the higher order expectations are of a dynamic nature, i.e., today’s expectations of tomorrow’s expectations. This contrasts with most of the literature that considers higher order expectations in a static context with strategic externalities, e.g., Morris and Shin [2003] or Woodford [2001].
II.C The Information Structure

We assume that at time t investors observe all past and current f_t, while they receive private signals about f_{t+1}, \ldots, f_{t+T}. More precisely, we assume that investors receive one signal each period about the observable fundamental T periods ahead. For example, at time t investor i receives a signal

$$v_t^i = f_{t+T} + \varepsilon_t^{vi} \quad \varepsilon_t^{vi} \sim N(0, \sigma_t^2)$$

(9)

where ε_t^{vi} is independent from f_{t+T} and other agents’ signals.\(^{17}\) As usual in this context we assume that the average signal received by investors is f_{t+T}, i.e.,

$$\int_0^1 v_t^i \, di = f_{t+T}.\(^{18}\)$$

We also assume that the observable fundamental’s process is always common knowledge to all agents and consider a general process:

$$f_t = D(L)\varepsilon_t^f \quad \varepsilon_t^f \sim N(0, \sigma_t^2)$$

(10)

where $D(L) = d_1 + d_2 L + d_3 L + \ldots$ and L is the lag operator. Since investors observe current and lagged values of the fundamental, knowing the process provides information about the fundamental at future dates.

II.D Solution Method

In order to solve the equilibrium exchange rate there is no need to compute all the higher order expectations that it depends on. The key equation used in the solution method is the interest parity condition (6), which captures foreign exchange market equilibrium. It only involves a first order average market expectation. We adopt a method of undetermined coefficients, conjecturing an equilibrium exchange rate equation and then verifying that it satisfies the equilibrium condition (6). Townsend [1983] adopts a similar method for solving a business cycle model with higher order expectations.\(^{19}\) Here we provide a brief description of the solution method, leaving details to Appendix D.

\(^{17}\)This implies that each period investors have T signals that are informative about future observed fundamentals. Note that the analysis could be easily extended to the case where investors receive a vector of signals each period.

\(^{18}\)See Admati (1995) for a discussion.

\(^{19}\)The solution method described in Townsend [1983] applies to the model in section 8 of that paper where the economy-wide average price is observed with noise. Townsend [1983] mistakenly
We conjecture the following equilibrium exchange rate equation that depends on shocks to observable and unobservable fundamentals.

\[s_t = A(L)\varepsilon_{t+T}^f + B(L)\varepsilon_t^b \]

(11)

where \(A(L) \) and \(B(L) \) are infinite order polynomials in the lag operator \(L \). The errors \(\varepsilon_t^m \) do not enter the exchange rate equation as they average to zero across investors. Since at time \(t \) investors observe the fundamental \(f_t \), only the innovations \(\varepsilon^f \) between \(t + 1 \) and \(t + T \) are unknown. Similarly shocks \(\varepsilon^b \) between \(t - T \) and \(t \) are unknown. Exchange rates at time \(t - T \) and earlier, together with knowledge of \(\varepsilon^f \) at time \(t \) and earlier, reveal the shocks \(\varepsilon^b \) at time \(t - T \) and earlier.

Investors can then solve a signal extraction problem for the finite number of unknown innovations. Both private signals and exchange rates from time \(t - T + 1 \) to \(t \) provide information about the unknown innovations. The solution to the signal extraction problem leads to expectations at time \(t \) of the unknowns as a function of observables, which in turn can be written as a function of the innovations themselves. One can then compute the average expectation of \(s_{t+1} \). Substituting the result into the interest parity condition (6) leads to a new exchange rate equation. The coefficients of the polynomials \(A(L) \) and \(B(L) \) can then be derived by solving a fixed point problem, equating the coefficients of the conjectured exchange rate equation to those in the equilibrium exchange rate equation. Although the lag polynomials are of infinite order, for lags longer than \(T \) periods the information dispersion plays no role and an analytical solution to the coefficients is feasible.\(^\text{20}\)

III Model Implications: A Special Case

In this section we examine the special case where \(T = 1 \), which has a relatively simple solution. This example is used to illustrate how information heterogeneity believed that higher order expectations are also relevant in a two-sector version of the model where firms observe each other’s prices without noise. However, Pearlman and Sargent [2002] show that the equilibrium fully reveals private information in that case.\(^\text{20}\)

\(^{20}\)In Bacchetta and van Wincoop (2003) we solve the model for the case where investors have infinite horizons. The solution is then complicated by the fact that investors also need to hedge against changes in expected future returns. This hedge term depends on the infinite state space, which is truncated to obtain an approximate solution. Numerical results are almost identical to the case of overlapping generations.
disconnects the exchange rate from observed macroeconomic fundamentals, while establishing a close relationship between the exchange rate and order flow.

One aspect that simplifies the solution for $T = 1$ is that higher order expectations are the same as first order expectations. This can be seen as follows. Bacchetta and van Wincoop (2004a) show that higher order expectations are equal to first order expectations plus average expectations of future market expectational errors. For example, the second order expectation of f_{t+2} can be written as $\mathbb{E}_t f_{t+2} = \mathbb{E}_t f_{t+2} + \mathbb{E}_t (\mathbb{E}_{t+1} f_{t+2} - f_{t+2})$. When $T = 1$ investors do not expect the market to make expectational errors next period. An investor may believe at time t that he has different private information about f_{t+1} than others. However, that information is no longer relevant next period since f_{t+1} is observed at $t + 1$.\(^{21}\)

While not critical, we make the further simplifying assumptions in this section that b_t and f_t are i.i.d., i.e., $\rho_b = 0$ and $f_t = \xi_t^{f}$. Replacing higher order with first order expectations, equation (7) then becomes:

$$s_t = \frac{1}{1 + \alpha} \left[f_t + \frac{\alpha}{1 + \alpha} \mathbb{E}_t f_{t+1} \right] - \frac{\alpha}{1 + \alpha} \gamma \sigma^2 b_t$$

(12)

Only the average expectation of f_{t+1} appears. We have replaced σ^2_t with σ^2 since we will focus on the stochastic steady state where second order moments are time-invariant.

III.A Solving the Model with Heterogenous Information

When $T = 1$ investors receive private signals v_t^i about f_{t+1}, as in (9). Therefore the average expectation $\mathbb{E}_t f_{t+1}$ in (12) depends on the average of private signals, which is equal to f_{t+1} itself. This implies that the exchange rate s_t depends on f_{t+1}, so that the exchange rate becomes itself a source of information about f_{t+1}. However, the exchange rate is not fully revealing as it also depends on the unobserved aggregate hedge trade b_t. To determine the information signal about f_{t+1} provided by the exchange rate we need to know the equilibrium exchange rate equation. We conjecture that

$$s_t = \frac{1}{1 + \alpha} f_t + \lambda_f f_{t+1} + \lambda_b b_t$$

(13)

\(^{21}\)See Bacchetta and van Wincoop (2004a) for a more detailed discussion of this point.
Since an investor observes f_t, the signal he gets from the exchange rate can be written

$$\bar{s}_t = f_{t+1} + \frac{\lambda_b}{\lambda_f} b_t$$ \hspace{1cm} (14)

where $\bar{s}_t = s_t - \frac{1}{1+\alpha} f_t$ is the "adjusted" exchange rate. The variance of this signal is $(\lambda_b/\lambda_f)^2 \sigma_b^2$. Consequently, investor i infers $E_t f_{t+1}$ from three sources of information: i) the distribution of f_{t+1}; ii) the signal v_i^t; iii) the adjusted exchange rate (i.e., (14)). Since errors in each of these signals have a normal distribution, the projection theorem implies that $E_t f_{t+1}$ is given by a weighted average of the three signals, with the weights determined by the precision of each signal. We have:

$$E_t f_{t+1} = \frac{\beta^v v_i^t + \beta^s s_t / \lambda_f}{D}$$ \hspace{1cm} (15)

where $\beta^v = 1/\sigma_v^2$, $\beta^s = 1/(\lambda_b/\lambda_f)^2 \sigma_b^2$, $\beta^f = 1/\sigma_f^2$, and $D = 1/var(f_{t+1}) = \beta^v + \beta^f + \beta^s$. For the exchange rate signal, the precision is complex and depends both on σ_b^2 and λ_b/λ_f, the latter being endogenous. By substituting (15) into (12) and using the fact that $\int_0^1 v_i^t di = f_{t+1}$ in computing $E_t f_{t+1}$, we get:

$$s_t = \frac{1}{1+\alpha} f_t + z \frac{\alpha}{(1+\alpha)^2} \beta^v f_{t+1} - z \frac{\alpha}{1+\alpha} \gamma \sigma^2 b_t$$ \hspace{1cm} (16)

where $z = 1/(1 - \frac{\alpha}{(1+\alpha)^2} \frac{\beta^v}{\lambda_f D}) > 1$. Equation (16) confirms the conjecture (13). Equating the coefficients on f_{t+1} and b_t in (16) to respectively λ_f and λ_b yields implicit solutions to these parameters.

We will call z the *magnification factor*: the equilibrium coefficient of b_t in (16) is the direct effect of b_t in (12) multiplied by z. This magnification can be explained by rational confusion. When the exchange rate changes, investors do not know whether this is driven by hedge trade or by information about future macroeconomic fundamentals by other investors. Therefore, they always revise their expectations of fundamentals when the exchange rate changes (equation (15)). This rational confusion magnifies the impact of the unobserved hedge trade on the exchange rate. More specifically, from (12) and (15), we can see that a change in b_t has two effects on s_t. First, it affects s_t directly in (12) through the risk-premium channel. Second, this direct effect is magnified by an increase in $E_t f_{t+1}$ from (15).
The magnification factor can be written as22

\[z = 1 + \frac{\beta_s}{\beta_v} \]

(17)

The magnification factor therefore depends on the precision of the exchange rate signal relative to the precision of the private signal. The better the quality of the exchange rate signal, the more weight is given to the exchange rate in forming expectations of \(f_{t+1} \), and therefore the larger the magnification of the unobserved hedge trade.

Figure 1 shows the impact of two key parameters on magnification. A rise in the private signal variance \(\sigma^2_v \) at first raises magnification and then lowers it. Two opposite forces are at work. First, an increase in \(\sigma^2_v \) reduces the precision \(\beta_v \) of the private signal. Investors therefore give more weight to the exchange rate signal, which enhances the magnification factor. Second, a rise in \(\sigma^2_v \) implies less information about next period’s fundamental and therefore a lower weight of \(f_{t+1} \) in the exchange rate. This reduces the precision \(\beta_s \) of the exchange rate signal, which reduces the magnification factor. For large enough \(\sigma^2_v \) this second factor dominates. The magnification factor is therefore largest for intermediate values of the quality of private signals. Figure 1 also shows that a higher variance \(\sigma^2_v \) of hedging shocks always reduces magnification. It reduces the precision \(\beta_s \) of the exchange rate signal.

\textbf{III.B Disconnect from Observed Fundamentals}

In order to precisely identify the channels through which information heterogeneity disconnects the exchange rate from observed fundamentals, we now compare the model to a benchmark with identically informed investors. The benchmark we consider is the case where investors receive the same signal on future \(f \)'s, i.e., they have incomplete but common knowledge on future fundamentals. With common knowledge all investors receive the signal

\[v_t = f_{t+T} + \varepsilon_t^v \quad \varepsilon_t^v \sim N(0, \sigma^2_{v,c}) \]

(18)

where \(\varepsilon_t^v \) is independent of \(f_{t+T} \).

22Substitute \(\lambda_f = \frac{\alpha}{(1 + \alpha)^2} \beta_v \) into \(z = 1/(1 - \frac{\alpha}{(1 + \alpha)} \frac{\beta_s}{\lambda_f}) \) and solve for \(z \).
Defining the precision of this signals as $\beta_{v,c} \equiv 1/\sigma_{v,c}^2$, the conditional expectation of f_{t+1} is

$$E_t f_{t+1} = E_t f_{t+1} = \frac{\beta_{v,c} v_t}{d}$$

(19)

where $d \equiv 1/\text{var}_t(f_{t+1}) = \beta_{v,c} + \beta_f$. Substitution into (12) yields the equilibrium exchange rate:

$$s_t = \frac{1}{1+\alpha} f_t + \lambda_v v_t + \lambda_b b_t$$

(20)

where $\lambda_v = \frac{\alpha}{(1+\alpha)^2} \beta_{v,c}/d$ and $\lambda_b = -\frac{\alpha}{1+\alpha} \gamma \sigma^2$. In this case the exchange rate is fully revealing, since by observing s_t investors can perfectly deduce b_t. Thus, λ_b is equal to the direct risk-premium effect of b_t given in (12).

We can now compare the connection between the exchange rate and observed fundamentals in the two models. In the heterogeneous information model the observed fundamental is f_t, while in the common knowledge model it also includes v_t. We will compare the R^2 of a regression of the exchange rate on observed fundamentals in the two models. From (13), the R^2 in the heterogeneous information model is defined by:

$$R^2 = \frac{1}{(1+\alpha)^2} \frac{\sigma_f^2}{\sigma_f^2 + \lambda_b^2 \sigma_f^2 + \gamma^2 \sigma^2 b_t}$$

(21)

From (20) the R^2 in the common knowledge model is defined by:

$$R^2 = \frac{1}{(1+\alpha)^2} \frac{\sigma_f^2 + \lambda_v^2 (\sigma_f^2 + \sigma_{v,c}^2)}{\left(\frac{\alpha}{1+\alpha}\right)^2 \gamma^2 \sigma_c^2 \sigma_b^2}$$

(22)

where σ_c^2 is the conditional variance of next period’s exchange rate in the common knowledge model. If the conditional variance of the exchange rate is the same in both models the R^2 is clearly lower in the heterogeneous information model. Two factors contribute to this. First, the contribution of unobserved trades to exchange rate volatility is amplified, as measured by the magnification factor z. Second, the average signal in the heterogeneous information model, which is equal to the future fundamental, is unobserved and therefore contributes to reducing the R^2. It appears in the denominator of (21). In contrast, the signal about future fundamentals is observed in the common knowledge model, and therefore contributes to raising the R^2. The variance of this signal, $\sigma_f^2 + \sigma_{v,c}^2$, appears in
the numerator in the numerator of (22). The conditional variance of the exchange rate also contributes to the R^2. It can be higher in either model, dependent on assumptions about parameters and the quality of the public and private signals.

III.C Order Flow

Evans and Lyons [2002a] define order flow as “the net of buyer-initiated and seller-initiated orders.” While each transaction involves a buyer and a seller, the sign of the transaction is determined by the initiator of the transaction. The initiator of a transaction is the trader (either buyer or seller) who acts based on new private information. Here private information is broadly defined. In our setup it includes both private information about the future fundamental and private information that leads to hedge trade. The passive side of trade varies across models. In a quote-driven dealer market, such as modeled by Evans and Lyons [2002a], the quoting dealer is on the passive side. The foreign exchange market has traditionally been characterized as a quote-driven multi-dealer market, but the recent increase in electronic trading (e.g., EBS) implies that a majority of trade is done through an auction market. In that case the limit orders are the passive side of transactions. The initiated orders are referred to as market orders that are confronted with the passive outstanding limit order book.

In our modeling of order flow we will think of the foreign exchange market as an auction market. We split the demand $b^F_{i,t}$ by investor i into order flow (market orders) and limit orders. Limit orders are associated with the component of demand that depends on the price (exchange rate) and common information. These are passive orders that are only executed when confronted with market orders. Market orders are associated with the component of demand that depends on private information. For investor i it is equal to the component of $b^F_{i,t}$ that is orthogonal to public information (other than the yet to be determined equilibrium exchange rate).

Using (44), (13) and (15), we can write total demand by individual i as

$$b^F_{i,t} = \frac{1 + \alpha}{\alpha \gamma \sigma^2 z} \left(\frac{1}{1 + \alpha} f_t - s_t \right) + \frac{\beta^v}{(1 + \alpha) \gamma \sigma^2 D} v^i_t - b^l_i$$

Limit orders are captured by the first term, while order flow is captured by the sum of the last two terms. If there were no private information, so that the last
two terms are equal to their unconditional mean of zero, demand would be the
same for all investors. Since aggregate supply is zero, the holdings of each investor
would always be zero. In that case the exchange rate may change due to new
public information \((s_t = f_t/(1 + \alpha))\), but this happens without any transactions
in the foreign exchange market.

In the presence of private information there will be trade in the foreign exchange
market. We define \(\Delta x_t^i\) as order flow of investor \(i\), the sum of the last two terms
on the right hand side of (23). Aggregate order flow \(\Delta x_t = \int_0^1 \Delta x_t^i di\) is then equal to
\[
\Delta x_t = \frac{\beta^u}{(1 + \alpha)^2 D_f} f_{t+1} - b_t
\]
Taking the aggregate of (23), imposing market equilibrium, we get
\[
s_t = \frac{1}{1 + \alpha} f_t + z \frac{\alpha}{1 + \alpha} \gamma \sigma_t^2 \Delta x_t
\] (25)

Equation (25) shows that the exchange rate is related in a simple way to a
commonly observed fundamental and order flow. The first term captures the
extent to which the exchange rate changes due to public information that requires
no trade. The order flow term captures the extent to which the exchange rate
changes due to the aggregation of private information. The impact of order flow
is larger the bigger the magnification factor \(z\). A higher level of \(z\) implies that the
order flow is more informative about the future fundamental.

It is easily verified that in the common knowledge model
\[
s_t = \frac{1}{1 + \alpha} f_t + \lambda_v v_t + \frac{\alpha}{1 + \alpha} \gamma \sigma_t^2 \Delta x_t
\] (26)
In that case order flow is only driven by hedge trades. Since these trades have
no information content about future fundamentals, the impact of order flow on
the exchange rate is smaller (not multiplied by the magnification factor \(z\)). A
comparison between (25) and (26) clearly shows that the exchange rate is more
closely connected to order flow in the heterogeneous information model and more
closely connected to public information in the common knowledge model.

Equations (25) and (26) are different from the specification used in empirical
analysis, where the exchange rate is usually in first differences. The reason is that

\(^{23}\) Notice also that equations (25) is derived under the assumption that the simple monetary
model is the true model of the economy.
in this section s_t is stationary, while in the data it is non-stationary. If we assume that f_t follows a random walk in the above example, s_t is no longer stationary. Then it is easy to show that Δs_t is related to Δx_t. In the numerical analysis of Section V, s_t is not stationary and we run regressions in differences.

The other interesting aspect of equation (25) is to illustrate the fact that the exchange rate and cumulative order flow are usually not cointegrated: in the above example, s_t is stationary, while cumulative order flow is not. In the Appendix, we show that the absence of cointegration holds in a more general context.

IV Model Implications: Dynamics

In this section, we examine the more complex dynamic properties of the model when $T > 1$. There are two important implications. First, it creates endogenous persistence of the impact of non-observable shocks on the exchange rate. Second, higher order expectation differ from first order expectations when $T > 1$. Even for $T = 2$ expectations of infinite order affect the exchange rate. We will show that higher order expectations tend to increase the magnification effect, but have an ambiguous impact on the disconnect. We now examine these two aspects in turn.

IV.A Persistence

When $T > 1$, even transitory non-observable shocks have a persistent effect on the exchange rate. This is caused by the combination of heterogeneous information and giving positive weight to information from previous periods in forming expectations. The exchange rate at time t depends on future fundamentals f_{t+1}, f_{t+2}, ..., f_{t+T}, and therefore provides information about each of these future fundamentals. A transitory unobservable shock to b_t affects the exchange rate at time t and therefore affects the expectations of all future fundamentals up to time $t + T$. This rational confusion will last for T periods, until the final one of these fundamentals.

24 More precisely, in this case we would find $\Delta s_t = (1 - \lambda_f)\Delta f_t + z_{1-\alpha} \gamma\sigma^2_t \Delta x_t - \lambda_b e^b_{t-1}$.

25 When both b and f follow random walks we obtain an equation for the common knowledge model very similar to that implied by the model of Evans and Lyons [2002a]: $\Delta s_t = \Delta f_t + \alpha \gamma \sigma_t^2 \Delta x_t$. Their model is indeed one where both “portfolio shifts” Δb_t and changes in observed fundamentals Δf_t are permanent and agents do not have private information about future fundamentals.
that f_{t+T}, is observed. Until that time investors will continue to give weight to s_t in forming their expectations of future fundamentals, so that b_t continues to affect the exchange rate. As investors gradually learn more about $f_{t+1}, f_{t+2}, ..., f_{t+T}$, both by observing them and through new signals, the impact on the exchange rate of the shock to b_t gradually dissipates.

The persistence of the b-shock on the exchange rate is also affected by the persistence of the shock itself. When the b-shock itself becomes more persistent, it is more difficult for investors to learn about fundamentals up to time $t+T$ from exchange rates subsequent to time t. The rational confusion is therefore more persistent and so is the impact of b-shocks on the exchange rate.

IV.B Higher Order Expectations

The topic of higher order expectations is a difficult one, but it has potentially important implications for asset pricing. Since a detailed analysis falls outside the scope of this paper, we limit ourselves to a brief discussion regarding the impact of higher order expectations on the connection between the exchange rate and observed fundamentals. We apply the results of Bacchetta and van Wincoop (2004a), where we provide a general analysis of the impact of higher order expectations on asset prices. We still assume that $\rho_b = 0$.

Let π_t denote the exchange rate that would prevail if the higher order expectations in (7) are replaced by first order expectations. In Bacchetta and van Wincoop (2004a) we show that the present value of the difference between higher and first order expectations depends on average first-order expectational errors about average private signals. In Appendix D we show that in our context this leads to

$$s_t = \pi_t + \frac{1}{1 + \alpha} \sum_{k=2}^{T} \pi_k \left(E_t f_{t+k} - f_{t+k} \right)$$

(27)

where π_k are parameters that are defined in the Appendix and which are positive.

\[\text{This result is related to findings by Brown and Jennings [1989] and Grundy and McNichols [1989], who show in the context of two-period noisy rational expectations models that the asset price in the second period is affected by the asset price in the first period.}\]

\[\text{Allen, Morris and Shin (2003) also provide an insightful analysis of higher order expectations with an asset price, but they do not consider an infinite horizon model.}\]

\[\text{That is } \pi_t = \frac{1}{1 + \alpha} \sum_{k=0}^{\infty} \left(\frac{\alpha}{1 + \alpha} \right)^k E_t \left(f_{t+k} - \alpha \gamma \sigma^2_{t+k} b_{t+k} \right)\]
in all numerical applications. Higher order expectations therefore introduce a new asset price component, which depends on average expectational errors about future fundamentals.

The expectational errors \(E_t f_{t+k} - f_{t+k} \) depend on errors in public signals. Based on private information alone these average expectational errors would be zero. There are two types of public information: current and past exchange rates and the process of the fundamental (together with observed current and past \(f_t \)). The errors in the exchange rate signals are the unobserved hedge trades at time \(t \) and earlier. On the other hand, the errors in the signals based on the process of \(f_t \) depend negatively on future innovations in the fundamental. The exchange rate therefore depends more on unobserved hedge trades, but less on unobserved future fundamentals. This implies that hedge shocks are further magnified by the presence of higher order expectations, while the overall impact on the connection between the exchange rate and observed fundamentals is therefore ambiguous.\(^{29}\)

\[\text{V Model Implications: Numerical Analysis} \]

We now solve the model numerically to illustrate the various implications of the model discussed above. We first consider a benchmark parameterization and then discuss sensitivity of the results to changing some key parameters.

\[\text{V.A A Benchmark Parameterization} \]

The parameters of the benchmark case are reported in Table 1. They are chosen mainly to illustrate the potential impact of information dispersion; they are not calibrated or chosen to match any data moments. We assume that the observable fundamental \(f \) follows a random walk, with a standard error of innovations of \(\sigma_f = 0.01 \). We assume that the extent of private information is small by setting a high standard deviation of the private signal error of \(\sigma_v = 0.08 \). The unobservable fundamental \(b \) follows an AR process with autoregressive coefficient of \(\rho_b = 0.8 \) and a standard deviation \(\sigma_b = 0.01 \) of innovations. Although we have made assumptions about both \(\sigma_b \) and risk-aversion \(\gamma \), they enter multiplicatively in the

\(^{29}\text{In Bacchetta and van Wincoop (2004a), we show that the main impact of higher order expectations is to disconnect the price from the present value of future observable fundamentals.}\)
model, so only their product matters. Finally, we assume that $T = 8$, so that agents obtain private signals about fundamentals eight periods later.

Figure 2 shows some of the key results from the benchmark parameterization. Panels A and B show the dynamic impact on the exchange rate in response to one-standard deviation shocks in the private and common knowledge models. In the heterogeneous agent model, there are two shocks: a shock to ϵ^f_{t+T}, which first affects the exchange rate at time t, and a shock to ϵ^b_t. In the common knowledge model there are also shocks to ϵ^v_t, which affect the exchange rate through the commonly observable fundamental v_t. In order to facilitate comparison, we set the precision of the public signal such that the conditional variance of next period’s exchange rate is the same as in the heterogeneous information model. This implies that the unobservable hedge trades have the same risk-premium effect in the two models. We will show below that our key results do not depend on the assumed precision of the public signal.

Magnification

The magnification factor in the benchmark parameterization turns out to be substantial: 7.2. This is visualized in Figure 2 by comparing the instantaneous response of the exchange rate to the b-shocks in the two models in panels A and B. The only reason the impact of a b-shock is so much bigger in the heterogeneous information model is the magnification factor associated with information dispersion.

Persistence

We can see from panel A that after the initial shock the impact of the b-shocks dies down almost as a linear function of time. The half-life of the impact of the shock is 3 periods. After 8 periods the rational confusion is resolved and the impact is the same as in the public information model, which is close to zero.

The meaning of a 3-period half-life depends of course on what we mean by a period in the model. What is critical is not the length of a period, but the length of time it takes for uncertainty about future macro variables to be resolved. For example, assume that T is eight months. If a period in our model is a month, then $T = 8$. If a period is three days, then $T = 80$. We find that the half-life of the impact of the unobservable hedge shocks on the exchange rate that can be
generated by the model remains virtually unchanged as we change the length of a period. For $T = 8$ the half life is about 3, while for $T = 80$ it is about 30.\footnote{When we change the length of a period we also need to change other model parameters, such as the standard deviations of the shocks. In doing so we restrict parameters such that (i) the contribution of b-shocks to $\text{var}(s_{t+1} - s_t)$ is the same as in the benchmark parameterization and (ii) the impact of b-shocks on exchange rate volatility remains largely driven by information dispersion (large magnification factor). For example, when we change the benchmark parameterization such that $T = 80$, $\sigma_v = 0.26$, $\sigma_f = 0.0016$ and $\alpha = 44$, the half-life is 28 periods. The magnification factor is 48.} In both cases the half-life is 3 months. Persistence is therefore driven critically by the length of time it takes for uncertainty to resolve itself. Deviations of the exchange rate from observed fundamentals could therefore be very long lasting when expectations about future fundamentals take a long time to verify, such as expectations about the long-term technology growth rate of the economy.

Exchange rate disconnect in the short and the long run

Panel C reports the contribution of unobserved hedge trade to the variance of $s_{t+k} - s_t$ at different horizons. In the heterogeneous information model, 70\% of the variance of a 1-period change in the exchange rate is driven by the unobservable hedge trade, while in the common knowledge model it is a negligible 1.3\%. While in the short-run unobservable fundamentals dominate exchange rate volatility, in the long-run observable fundamentals dominate. The contribution of hedge trades to the variance of exchange rate changes over a 10-period interval is less than 20\%. As seen in panel A, the impact of hedge trade on the exchange rate gradually dies down as rational confusion dissipates over time.

In order to determine the relationship between exchange rates and observed fundamentals, panel D reports the R^2 of a regression of $s_{t+k} - s_t$ on all current and lagged observed fundamentals. In the heterogeneous information model this includes all one period changes in the fundamental f that are known at time $t+k$: $f_{t+s} - f_{t+s-1}$, for $s \leq k$. In the common knowledge model it also includes the corresponding one-period changes in the public signal v. The R^2 is close to 1 for all horizons in the common knowledge model, while it is much lower in the heterogeneous information model. At the one-period horizon it is only 0.14, and then rises as the horizon increases, to 0.8 for a 20-period horizon. This is consistent with extensive findings that macroeconomic fundamentals have weak explanatory
power for exchange rates in the short to medium run, starting with Meese and Rogoff [1983], and findings of a much closer relationship over longer horizons.31

Two factors account for the results in panel D. The first is that the relative contribution of unobservable hedge shocks to exchange rate volatility is large in the short-run and small in the long-run, as illustrated in panel C. The second factor is that through private signals the exchange rate at time t is also affected by innovations $\epsilon_{t+1}^f, \ldots, \epsilon_{t+T}^f$ in future fundamentals that are not yet observed today. In the long-run these become observable, again contributing to a closer relationship between the exchange rate and observed fundamentals in the long-run.

Exchange rate and future fundamentals

Recently Engel and West [2002] and Froot and Ramadorai [2002] have reported evidence that exchange rate changes predict future fundamentals, but only weakly so. Our model is consistent with these findings. Panel E of Figure 2 reports the R^2 of a regression $f_{t+k} - f_{t+1}$ on $s_{t+1} - s_t$ for $k \geq 2$. The R^2 is positive, but is never above 0.14. The exchange rate is affected by the private signals of future fundamentals, which aggregate to the future fundamentals. However, most of the short-run volatility of exchange rates is associated with unobservable hedge trades, which do not predict future fundamentals.

Exchange rate and order flow

Order flow is again defined as the component of demand for foreign bonds that is orthogonal to public information (other than the yet to be determined s_t). Details of how it is computed are discussed in the Appendix. With x_t defined as cumulative order flow, panel F reports the R^2 of a regression of $s_{t+k} - s_t$ on $x_{t+k} - x_t$. The R^2 is large and rises with the horizon from 0.84 for $k = 1$ to 0.97 for $k = 40$. Although it appears that the R^2 approaches 1 as k approaches infinity, it actually asymptotes to a level near 0.99.32 We show in the appendix that cumulative order flow and the exchange rate are not cointegrated. Both the exchange rate and cumulative order flow depend on f_t. But cumulative order flow also depends on the infinite sum of all past hedge demand innovations, while the

31See MacDonald and Taylor [1993], Mark [1995], Chinn and Meese [1995], Mark and Sul [2001], Froot and Ramadorai [2002] and Gourinchas and Rey [2004].

32The relationship between $s_{t+k} - s_t$ and $x_{t+k} - x_t$ does not always get stronger for longer horizons. For low values of T the R^2 declines with k and asymptotes at a positive level.
coefficient on past hedge innovations in the equilibrium exchange rate approaches zero for long lags.

It is important to point out that the close relationship between the exchange rate and order flow in the long run is not inconsistent with the close relationship between the exchange rate and observed fundamentals in the long run. When the exchange rate rises due to private information of permanently higher future fundamentals, the information reaches the market through order flow. Eventually the future fundamentals will be observed, so that there is a link between the exchange rate and the observed fundamentals. But most of the information about higher future fundamentals is aggregated into the price through order flow. Order flow therefore has a long-run effect on the exchange rate.33

These results from the model can be compared to similar regressions that have been conducted based on the data. Evans and Lyons [2002a] estimate regressions of one-day exchange rate changes on daily order flow. They find an R^2 of 0.63 and 0.40 for respectively the DM/$ and the yen/$ exchange rate, based on four months of daily data in 1996. Evans and Lyons [2002b] report results for nine currencies. They point out that exchange rate changes for any currency pair can also be affected by order flow for other currency pairs. Regressing exchange rate changes on order flow for all currency pairs they find an average R^2 for the nine currencies of 0.67. The pictures for the exchange rate and cumulative order flow reported in Evans and Lyons [2002a] suggest that the link is even stronger over longer horizons than one day, although their dataset is too short to formally run such regressions.

The strong link between order flow and exchange rates in both the model and the data implies that most information reaches the market through order flow, and is therefore private information rather than public information. While not reported in panel F, the R^2 of regressions of exchange rate changes on order flow in the public information model is close to zero. Two factors contribute to the much closer link between order flow and exchange rates in the heterogeneous information model. First, in the heterogeneous information model both private information about future fundamentals and hedge trades contribute to order flow, while in the public information model only hedge trades contribute to order flow.

33This point is also emphasized by Lyons [2001].
Second, the impact on the exchange rate of the order flow due to hedge trades is much larger in the heterogeneous information model. The reason is that order flow is informative about future fundamentals in the heterogeneous information model. As illustrated in section III.C, the magnification factor z applied to the impact of b-shocks on the exchange rate also applies to the impact of order flow on the exchange rate.

Figure 3 reports simulations of the exchange rate and cumulative order flow over 40 periods. The Figure shows four simulations, based on different random draws of the observable and unobservable fundamentals. The simulations confirm a close link between the exchange rate and cumulative order flow at both short and long horizons. Some of these pictures look quite similar to those reported by Evans and Lyons [2002a] for the DM/$ and yen/$.

V.B Sensitivity to Model Parameters

Before discussing the sensitivity of the main results to the model parameters in the heterogeneous information model, we briefly discuss the sensitivity of the results in the common knowledge model to the assumed precision of the common signal. Figure 2 assumes that the precision of the public signal is such that the conditional variance of the exchange rate is the same in the two models. This implies a standard deviation of the error in the public signal of 0.033. But the stark difference between the two models regarding the connection between the exchange rate and observed fundamentals does not depend on the assumed precision of the public signal. Consider the R^2 reported in panel 2D of a regression of a one-period change in the exchange on all current and past observed fundamentals. In the heterogeneous information model it is 0.14, while in the public information model it varies from 0.97 to 0.99 as we change the variance of the noise in the public signal from infinity to zero.

We now consider sensitivity analysis to four key model parameters in the heterogeneous information model: σ_v, σ_b, ρ_b and T. We consider the impact of varying these parameters on two key moments: the R^2 of a regression of $s_{t+1} - s_t$ on observed fundamentals at $t + 1$ and earlier and the R^2 of a regression of $s_{t+1} - s_t$ on

\[34\] Both the log of the exchange rate and cumulative order flow are set at zero at the start of the simulation.
order flow $x_{t+1} - x_t$. These are the moments reported in respectively panels 2D a 2F for $k = 1$.

The results are reported in Figure 4. Not surprisingly the two R^2’s are almost inversely related as we vary parameters. The more important order flow as a channel through which information is transmitted to the market, the less the explanatory power of commonly observed macro fundamentals.\footnote{The two lines do not add to one. The reason is that some variables that are common knowledge are not included in the regression on observed fundamentals. These are past exchange rates and hedge demand T periods ago. Past exchange rates are not included since they are not traditional fundamentals. Hedge demand T periods ago can be indirectly derived from exchange rates T periods ago and earlier, but is not a directly observable fundamental.}

An increase in σ_v, and therefore less precise private information, will reduce the link between the exchange rate and order flow and increase the link between the exchange rate and observed fundamentals. In the limit as the noise in private signals approaches infinity, the heterogeneous information model approaches the public information model (with uninformative signals).

Increasing the noise originating from hedge trade, by either raising the standard deviation σ_b or the persistence ρ_b, tends to reduce somewhat the link between the exchange rate and order flow and strengthen the link between the exchange rate and observed fundamentals. The effect is relatively small though due to offsetting factors. Order flow becomes less informative about future fundamentals with more noisy hedge trade. This reduces the impact of order flow on the exchange rate. On the other hand, the volatility of order flow increases, which contributes positively to the R^2 for order flow. The former effect slightly dominates.

It is also worthwhile pointing out that the assumed stationarity of hedge trade in the benchmark parameterization is not responsible for the much weaker relationship between the exchange rate and observed fundamentals in the short-run than the long-run. Even if we assume $\rho_b = 1$, so that the unobserved hedge trade follows a random walk as well, this finding remains largely unaltered. The R^2 for observed fundamentals rises from 0.21 for a 1-period horizon to 0.85 for a 40-period horizon. The impulse response function of a hedge trade innovation on the exchange remains very similar to panel 2A. The impact remains larger than in the public information model for the first T periods as a result of the rational confusion and after that is the same as in the public information model. The only difference is
that now there is a small long-run impact since b is permanently affected.

The final panel of Figure 4 shows the impact of changing T. As T increases the quality of private information improves since agents have signals about fundamentals further into the future. This implies that the impact of order flow on the exchange rate increases. Moreover, order flow itself also becomes more volatile as more private information is aggregated. This contributes to a closer link between order flow and the exchange rate and a weaker link between observed fundamentals and the exchange rate. When T is sufficiently large the link between the exchange rate and order flow is weakened when T is raised further. The reason is that as uncertainty about next period’s exchange rate falls when we raise T, the risk-premium drops and therefore also the effect of hedge trade on the exchange rate.\[36\]

VI Conclusion

The close relationship between order flow and exchange rates, as well as the large volume of trade in the foreign exchange market, suggest that investor heterogeneity may be a key element in understanding exchange rate behavior. In this paper, we have explored the implications of information dispersion in a simple model of exchange rate determination. We have shown that these implications are rich and that investors’ heterogeneity could be an important element in explaining the behavior of exchange rates. In particular, the model can account for some important stylized facts on the relationship between exchange rates, fundamentals and order flow: (i) fundamentals have little explanatory power for short to medium run exchange rate movements, (ii) over longer horizons the exchange rate is primarily driven by fundamentals, (iii) exchange rate changes are a weak predictor of future fundamentals, (iv) exchange rate changes are a closely related to order flow.

The paper should be considered only as a first step in a promising line of research. A natural next step is to confront the model to the data. While the extent of information dispersion and unobservable hedge trades are not known, they both affect order flow. Some limited data on order flow are now available

36Equation (25) further illustrates this point. The impact of order flow on the exchange rate depends on $z\sigma^2$. While z rises as T is increased, σ^2 falls. The latter effect will eventually dominate.
and will help tie down the key model parameters. The magnification factor may be quite large. Back-of-the-envelope calculations by Gennotte and Leland [1990] in the context of a static model for the U.S. stock market crash of October 1987 suggest that the impact of a $6 bln. unobserved supply shock was magnified by a factor 250 due to rational confusion about the source of the stock price decline. In the context of foreign exchange markets, Osler [2003] shows that positive feedback trading rules can lead to significant price changes.

There are several directions in which the model can be extended. The first is to explicitly model nominal rigidities as in the “new open economy macro” literature. In that literature exchange rates are entirely driven by fundamentals. Conclusions that have been drawn about optimal monetary and exchange rate policies are likely to be substantially revised when introducing investor heterogeneity. Another direction is to consider alternative information structures. For example, the information received by agents may differ in its quality or in its timing. There can also be heterogeneity about the knowledge of the underlying model. For example, in Bacchetta and van Wincoop [2004], we show that if investors receive private signals about the persistence of shocks, the impact of observed variables on the exchange rate varies over time. The rapidly growing body of empirical work on order flows in the microstructure literature is likely to increase our understanding of the nature of the information structure, providing guidance to future modeling.
Appendix

A Derivation of equation (7)

It follows from (1), (2), (3), and (6) that

\[s_t = \frac{1}{1 + \alpha^2} f_t - \frac{\alpha}{1 + \alpha^2} \gamma \sigma^2_t \tilde{b}_t + \frac{\alpha}{1 + \alpha} E^1_t(s_{t+1}) \]

Therefore

\[E^1_t(s_{t+1}) = \frac{1}{1 + \alpha^2} E^1_t(f_{t+1}) - \frac{\alpha}{1 + \alpha^2} \gamma \sigma^2_{t+1} E^1_t(\tilde{b}_{t+1}) + \frac{\alpha}{1 + \alpha} E^2_t(s_{t+2}) \]

Substitution into (28) yields

\[s_t = \frac{1}{1 + \alpha} \left[f_t - \gamma \sigma^2_t \tilde{b}_t + \frac{\alpha}{1 + \alpha} E^1_t \left(f_{t+1} - \gamma \sigma^2_{t+1} \tilde{b}_{t+1} \right) \right] + \left(\frac{\alpha}{1 + \alpha} \right)^2 E^2_t(s_{t+2}) \]

Continuing to solve for \(s_t \) this way by forward induction and assuming a no-bubble solution yields (7).

B Conditional variance of next period’s exchange rate

Consider the case of common knowledge. From (20) at \(t + 1 \):

\[\sigma^2_t = a + b \sigma^4_{t+1} \]

where \(a = (1 + d\tilde{\alpha} \beta^c / \beta^n) / d(1 + \alpha)^2 \), \(b = \gamma^2 \sigma^2_\tilde{\alpha} \) and \(\tilde{\alpha} = (\alpha / (1 + \alpha))^2 \). In the steady state, \(\sigma^2 = \sigma^2_t = \sigma^2_{t+1} \). It is easy to see that:

\[\sigma^2 = \frac{1 \pm \sqrt{1 - 4ab}}{2b} \]

Thus, as long as \(4ab < 1 \), there are two steady states with low and high \(\sigma^2 \). From (31), \(d\sigma^2_t / d\sigma^4_{t+1} = 2b \sigma^2 = 1 \pm \sqrt{1 - 4ab} \). Thus, \(d\sigma^2_t / d\sigma^4_{t+1} < 1 \) around the low \(\sigma^2 \)
steady state and $d\sigma^2_t/d\sigma^2_{t+1} > 1$ for the high σ^2 steady state. Since σ^2_t is a forward-looking variable, only the low σ^2 steady state gives a stable equilibrium. The high steady state equilibrium is knife-edge, in that it can only be an equilibrium today if one believes that σ_t is exactly the high steady state equilibrium at all future dates. In the model with heterogeneous information, the results are similar, even though σ^2 has to be evaluated numerically.

C Solution method with two-period overlapping investors

This method is related to Townsend (1983, section VIII). We start with the conjectured equation (11) for s_t and check whether it is consistent with the model, in particular with equation (6). For this, we need to estimate the conditional moments of s_{t+1} and express them as a function of the model’s innovations. Finally we equate the parameters from the resulting equation to the initially conjectured equation.

C.1 The exchange rate equation

From (2), (1), and the definition of f_t, it is easy to see that $i_t^* - i_t = (f_t - s_t)/\alpha$. Thus, (6) gives (for a constant σ^2_t):

$$s_t = \frac{\alpha}{1 + \alpha} E_t(s_{t+1}) + \frac{f_t}{1 + \alpha} - \frac{\alpha}{1 + \alpha} \gamma b_t \sigma^2$$ \hspace{1cm} (33)

We want to express (33) in terms of current and past innovations. First, we have $f_t = D(L)\varepsilon^f_t$, where $D(L) = d_1 + d_2 L + d_3 L + ...$. Second, using (5) we can write $b_t = C(L)\varepsilon^b_t$, where $C(L) = 1 + \rho_b L + \rho_b^2 L^2 + ...$. What remains to be computed are $E(s_{t+1})$ and σ^2.

Applying (11) to s_{t+1}, decomposing $A(L)$ and $B(L)$, we have

$$s_{t+1} = a_1 \varepsilon^f_{t+T+1} + b_1 \varepsilon^b_{t+1} + \theta' \xi_t + A^*(L)\varepsilon^f_t + B^*(L)\varepsilon^b_t$$ \hspace{1cm} (34)

where $\xi_t = (\varepsilon^f_{t+T}, ..., \varepsilon^f_{t+1}, \varepsilon^b_t, ..., \varepsilon^b_T)$ represents the vector of unobservable innovations, $\theta' = (a_2, a_3, ..., a_{T+1}, b_2, ..., b_{T+1})$ and $A^*(L) = a_{T+2} + a_{T+3} L + ...$ (with

\footnote{See, for example, Blanchard and Fischer [1989], ch. 5 for a discussion of these issues.}
a similar definition for $B^*(L)$). Thus, we have (since ε_j^f and $\varepsilon_j^{b_{-T}}$ are known for $j \leq t$):

$$E_t^i(s_{t+1}) = \theta' E_t^i(\xi_t) + A^*(L)\varepsilon_t^f + B^*(L)\varepsilon_{t-1}^b$$

(35)

$$\sigma^2 = \text{var}_t(s_{t+1}) = a_f^2\sigma_f^2 + b_b^2\sigma_b^2 + \theta' \text{var}_t(\xi_t) \theta$$

(36)

We need to estimate the conditional expectation and variance of the unobservable ξ_t as a function of past innovations.

C.2 Conditional moments

We follow the strategy of Townsend (1983, p.556), but use the notation of Hamilton [1994, chapter 13]. First, we subtract the known components from the observables s_t and v_t and define these new variables as s_t^* and v_t^i. Let the vector of these observables be $Y_t = (s_t^*, s_{t-1}^*, ..., s_{t-T+1}^*, v_t^i, ..., v_{t-T+1}^i)$. From (34) and (9), we can write:

$$Y_t^i = H_0 \xi_t + w_t^i$$

(37)

where $w_t^i = (0, ..., 0, \varepsilon_t^v, ..., \varepsilon_{t-T+1}^v)'$ and

$$H' =
\begin{bmatrix}
a_1 & a_2 & ... & a_T & b_1 & b_2 & ... & b_T \\
0 & a_1 & ... & a_{T-1} & 0 & b_1 & ... & b_{T-1} \\
... & ... & ... & ... & ... & ... & ... & ... \\
0 & 0 & ... & a_1 & 0 & 0 & ... & b_T \\
d_1 & d_2 & ... & d_T & 0 & 0 & ... & 0 \\
0 & d_1 & ... & d_{T-1} & 0 & 0 & ... & 0 \\
... & ... & ... & ... & ... & ... & ... & ... \\
0 & 0 & 0 & d_1 & 0 & 0 & ... & 0
\end{bmatrix}$$

The unconditional means of ξ_t and w_t^i are zero. Define their unconditional variances as \tilde{P} and R. Then we have (applying eqs. (17) and (18) in Townsend):

$$E_t^i(\xi_t) = MY_t^i$$

(38)

where:

$$M = \tilde{P}H'[H'\tilde{P}H + R]^{-1}$$

(39)

Moreover, $P \equiv \text{var}_t(\xi_t)$ is given by:

$$P = \tilde{P} - MH'\tilde{P}$$

(40)
C.3 Solution

First, σ^2 can easily be derived from (36) and (40). Second, substituting (38) and (37) into (35), and averaging over investors, gives the average expectation in terms of innovations:

$$\mathcal{E}_t(s_{t+1}) = \theta'M'H'\xi_t + A^*(L)\xi_t^L + B^*(L)\xi_t^L - T$$ \hspace{1cm} (41)

We can then substitute $\mathcal{E}_t(s_{t+1})$ and σ^2 into (33) so that we have an expression for s_t that has the same form as (11). We then need to solve a fixed point problem.

Although $A(L)$ and $B(L)$ are infinite lag operators, we only need to solve a finitely dimensional fixed point problem in the set of parameters $(a_1, a_2, ..., a_T, b_1, ..., b_{T+1})$. This can be seen as follows. First, it is easily verified by equating the parameters of the conjectured and equilibrium exchange rate equation for lags T and greater that $b_{T+s+1} = \frac{1+\alpha}{\alpha} b_{T+s} + \gamma \sigma^2 \rho_b^T \xi_t^L$ and $a_{T+s+1} = \frac{1+\alpha}{\alpha} a_{T+s} - \frac{1}{\alpha} d_s$ for $s \geq 1$. Assuming non-explosive coefficients, the solutions to these difference equations give us the coefficients for lags $T+1$ and greater: $b_{T+1} = -\alpha \gamma \sigma^2 \rho_b^T / (1 + \alpha - \alpha \rho_b)$, $b_{T+s} = (\rho_b)^{s-1} b_{T+1}$ for $s \geq 2$, $a_{T+1} = (1/\alpha) \sum_{s=1}^{\infty} (\alpha/(1 + \alpha))^{s} d_s$, and $a_{T+s+1} = \frac{1+\alpha}{\alpha} a_{T+s} - \frac{1}{\alpha} d_s$ for $s \geq 1$. When the fundamental follows a random walk, $d_s = 1 \forall s$, so that $a_{T+s} = 1 \forall s \geq 1$.

The fixed point problem in the parameters $(a_1, a_2, ..., a_T, b_1, ..., b_{T+1})$ consists of $2T+1$ equations. One of them is the $b_{T+1} = -\alpha \gamma \sigma^2 \rho_b^T / (1 + \alpha - \alpha \rho_b)$. The other $2T$ equations equate the parameters of the conjectured and equilibrium exchange rate equations up to lag $T-1$. The conjectured parameters $(a_1, a_2, ..., a_T, b_1, ..., b_{T+1})$, together with the solution for a_{T+1} above allow us to compute θ, H, M and σ^2, and therefore the parameters of the equilibrium exchange rate equation. We use the Gauss NLSYS routine to solve the $2T+1$ non-linear equations. A method that works as well (and is more efficient for large T) is to assume starting values for these parameters, map them into a new set of parameters by solving the equilibrium exchange rate equation, and continue this process until it converges, which is usually the case.

D Higher Order Expectations

We show how (27) follows from Proposition 1 in Bacchetta and van Wincoop (2004a). Bacchetta and van Wincoop (2004a) define the higher order wedge Δ_t as
the present value of deviations between higher order and first order expectations. In our application:

\[\Delta_t = \sum_{s=2}^{\infty} \left(\frac{\alpha}{1+\alpha} \right)^s \left[\mathcal{E}_s f_{t+s} - \mathcal{E}_t f_{t+s} \right] \]

Define \(PV_t = \sum_{s=1}^{\infty} \left(\frac{\alpha}{1+\alpha} \right)^s f_{t+s} \) as the present discounted value of future observed fundamentals. Let \(V_t^i \) be the set of private signals available at time \(t \) that are still informative about \(PV_{t+1} \) at \(t+1 \). In our application \(V_t^i = (v_{t-T+2}^i, \ldots, v_t^i)' \). Let \(\bar{V}_t \) denote the average across investors of the vector \(V_t^i \). Proposition 1 of Bacchetta and van Wincoop (2004a) then says that

\[\Delta_t = \Pi_t (\mathcal{E}_t \bar{V}_t - \bar{V}_t) \]

where \(\Pi_t = \frac{1}{\rho^T} \left(I - \Psi \right)^{-1} \theta' \), \(\theta' = \partial \mathcal{E}_t f_{t+1} / \partial V_t^i \) and \(\Psi' = \partial \mathcal{E}_t f_{t+1} / \partial V_t^i \).

In our context \(\bar{V}_t = (f_{t+2}, \ldots, f_{t+T}) \). For \(\rho_b = 0 \) equations (7), (42) and (43) then lead to (27) with \(\Pi = (\pi_2, \ldots, \pi_T)' \).

E Order Flow

In this section we will describe our measure of order flow when the observable fundamental follows a random walk. Using the notation and results from Appendix C, we have

\[b_{t+1}^i = \frac{\theta' \mathbf{M} Y_t^i + f_t - nb_{t-T} - s_t + i_t^* - i_t}{\gamma \sigma_t^2} - b_t^i \]

where \(n = \alpha \gamma \sigma_t^2 \rho_T^2 / (1+\alpha-\alpha \rho) \). Let \(\mu = (\mu_1, \ldots, \mu_T)' \) be the last \(T \) elements of \(\mathbf{M}' \theta \), divided by \(\gamma \sigma_t^2 \). The component of demand that depends on private information is therefore

\[\sum_{s=1}^{T} \mu_s v_{t+1-s}^i - b_t^i \]

which aggregates to

\[(\epsilon_{t+T}^f, \ldots, \epsilon_{t+1}^f) \mu - b_t. \]

Order flow \(x_t - x_{t-1} \) is defined as the component of (46) that is orthogonal to public information (other than \(s_t \)). Public information that helps predict this term includes \(b_{t-T} \) and \(s_{t-1}^*, \ldots, s_{t-T+1}^* \). Define \(\eta' = (\mu', -1, -\rho_b, \ldots, -\rho_b^{T-1}) \). Order flow is then the error term of a regression of \(\eta' \xi_t \) on \(s_t^*, \ldots, s_{t-T+1}^* \). Defining \(\mathbf{H}_s \) as rows 2
to T of the matrix H defined in appendix C.2, it follows from appendix C.2 that $\tilde{E}_t(\xi_t|s_t^*,..,s_{t-T}^*) = M_s H_s^\prime \xi_t$, where $M_s = \tilde{P} H_s \left[H_s^\prime \tilde{P} H_s + R \right]^{-1}$. It follows that

$$x_t - x_{t-1} = \eta^\prime (I - M_s H_s^\prime) \xi_t$$ (47)

where I is the identity matrix.

It can also be shown that the exchange rate and cumulative order flow are not cointegrated. When f follows a random walk, the equilibrium exchange rate can be written as (see appendix C.3)

$$s_t = f_t - \phi b_{t-T} + \tau^t \xi_t$$ (48)

Order flow is equal to

$$x_t - x_{t-1} = \nu^\prime \xi_t$$ (49)

where $\nu^\prime = \eta^\prime (I - M_s H_s^\prime)$. It therefore follows that cumulative order flow is equal to

$$x_t = (\nu_1 + .. + \nu_T) f_{t-T} + (\nu_{T+1} + .. + \nu_{2T}) \sum_{s=0}^{\infty} \epsilon_{t-T-s}^b + \psi^t \xi_t$$ (50)

where ψ depends on the parameters in the vector ν. It is due to the second term in the cumulative order flow equation that the exchange rate is not cointegrated with cumulative order flow. The coefficient on ϵ_{t-k}^b approaches zero in the exchange rate equation as $k \to \infty$ (assuming $\rho_b < 1$), while cumulative order flow depends on the infinite unweighted sum of all past innovations to hedge trade.
References

Table 1: Parameterization

<table>
<thead>
<tr>
<th></th>
<th>Benchmark parameterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_f</td>
<td>0.01</td>
</tr>
<tr>
<td>σ_b</td>
<td>0.01</td>
</tr>
<tr>
<td>σ_v</td>
<td>0.08</td>
</tr>
<tr>
<td>ρ_b</td>
<td>0.8</td>
</tr>
<tr>
<td>α</td>
<td>10</td>
</tr>
<tr>
<td>γ</td>
<td>500</td>
</tr>
<tr>
<td>T</td>
<td>8</td>
</tr>
</tbody>
</table>
Figure 1 Magnification Factor in Model with T=1*

*This figure is based on the simulation of the model for T=1, $\rho_1 = \rho_2 = \rho_b = 0$. The qualitative results do not depend on other model parameters. We set $\alpha = 10$, $\gamma = 50$, and all standard deviations of the shocks equal to 0.1, unless varied within the Figure.
Figure 2 Results for the Benchmark Parameterization*

Panel A Impulse Response Functions in Heterogeneous Information Model

Panel B Impulse Response Functions in Common Knowledge Model

Panel C Percent contribution b-shocks to $\text{var}(s_{t+k} - s_t)$

Panel D Connection Exchange Rate-Observed Fundamentals:
R^2 of regression of $s_{t+k} - s_t$ on observed fundamentals.*

* See Table 1 for parameter assumptions. In Panel D we report the R^2 of a regression of $s_{t+k} - s_t$ on all $f_{t+s} - f_{t+s-1}$ for $s \leq k$.
Figure 2 Results for the Benchmark Parameterization-continued.

Panel E Connection Exchange Rate-Future Fundamentals:
R^2 of regression of \(f_{t+k} - f_{t+1} \) on \(s_{t+1} - s_t \).

Panel E Connection Exchange Rate-Order Flow
R^2 of regression of \(s_{t+k} - s_t \) on \(x_{t+k} - x_t \).
Figure 3 Four Model Simulations Exchange Rate and Cumulative Order Flow*

*All simulations start at 0 for both the log exchange rate and cumulative order flow. The scale for cumulative order flow is normalized such that the cointegrating vector for the log exchange rate and order flow is 1.
Figure 4 R^2 of regression of $s_{t+1}-s_t$ on (i) observed fundamentals and (ii) order flow: sensitivity analysis.*

* Order flow: R^2 of regression of $s_{t+1}-s_t$ on $x_{t+1}-x_t$ (same as Figure 2F for $k=1$). Observed fundamentals: R^2 of regression $s_{t+1}-s_t$ on all $f_{t+s} - f_{t+s-1}$ for $s \leq 1$ (same as Figure 2D for $k=1$). The figures show how the explanatory power of order flow and observed fundamentals changes when respectively σ_v, σ_b, T, and ρ_b are varied, holding constant the other parameters as in the benchmark parameterization.