
DIVIDING LINES IN UNSTABLE THEORIES

GABRIEL CONANT

The aim of this paper is to define various properties of formulas in first order theories, and prove the

appropriate implications between these properties. Most definitions are taken from [3], but the definitions

themselves and many of the proofs are due to Shelah (see [4, II]). We give citations at the beginning of proofs

taken from other sources.

Recall that a theory is stable if no formula has the so-called “order property”, and a theory is simple if

no formula has the “tree property”. We first define these properties, along with a few more complicated

properties of the same type. We fix some theory T and a sufficiently saturated M |= T . If ϕ is a sentence

with parameters from M, we write |= ϕ if M |= ϕ.

1. A Chain of Properties

Definition 1.1. A formula ϕ(x, y) has the order property, OP, if there are tuples (ai)i<ω and (bi)i<ω

such that |= ϕ(ai, bj) if and only if i < j.

For n ≥ 3, a formula ϕ(x, y), with l(x) = l(y), has the n-strong order property, SOPn, if

|= ¬∃x1, . . . , xn(ϕ(x1, x2) ∧ ϕ(x2, x3) ∧ . . . ∧ ϕ(xn, x1)),

and there are tuples (ai)i<ω such that |= ϕ(ai, aj) for all i < j < ω.

A formula ϕ(x, y), with l(x) = l(y), has the strong order property, SOP, if for all n ≥ 3

|= ¬∃x1, . . . , xn(ϕ(x1, x2) ∧ ϕ(x2, x3) ∧ . . . ∧ ϕ(xn, x1)),

and there are tuples (ai)i<ω such that |= ϕ(ai, aj) for all i < j < ω.

A formula ϕ(x, y) has the strict order property, sOP, if there are tuples (ai)i<ω such that

|= ∃x(¬ϕ(x, ai) ∧ ϕ(x, aj)) ⇔ i < j.
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Consider the definition of SOPn and its natural extension to n = 1 or n = 2. For n = 2 we have the

order property. Moreover, any theory with an infinite model would satisfy the definition with n = 1 via the

formula x 6= y. Therefore we will redefine SOP2 and SOP1 in the same vein as the next class of properties,

which are defined using trees as index sets.

Before defining these properties, we specify some notation concerning trees.

Definition 1.2. Let A be a set and define

A<ω =
⋃
n∈ω

An.

If (a0, . . . , an), (b0, . . . , bm) ∈ A<ω, define

(a0, . . . , an)̂ (b0, . . . , bm) := (a0, . . . , an, b0, . . . , bm) ∈ A<ω.

If µ, η ∈ A<ω, we say µ ≺ η if there is some γ ∈ A<ω such that η = µˆγ. For a ∈ A we identify a and

(a) ∈ A<ω. If n ∈ ω, we also define (a)n = (a, a, . . . , a︸ ︷︷ ︸
n times

) ∈ A<ω. Two elements µ, η ∈ A<ω are incomparable

if µ ⊀ η and η ⊀ µ.

The next class of properties on formulas are defined using tuples indexed by trees.

Definition 1.3. A formula ϕ(x, y) has the tree property, TP, if there are tuples (aη)η∈ω<ω and some k ≥ 2

such that for all σ ∈ ωω, {ϕ(x, aσ|n) : n < ω} is consistent; but for all η ∈ ω<ω, {ϕ(x, aηˆn) : n < ω} is

k-inconsistent.

A formula ϕ(x, y) has the tree property 1, TP1, if there are tuples (aη)η∈ω<ω and some k ∈ Z+ such that

for all σ ∈ ωω, {ϕ(x, aσ|n) : n < ω} is consistent; but for all incomparable µ, η ∈ ω<ω, {ϕ(x, aµ), ϕ(x, aη)}

is inconsistent.

A formula ϕ(x, y) has SOP1 if there are tuples (aη)η∈2<ω and some k ∈ Z+ such that for all σ ∈ 2ω,

{ϕ(x, aσ|n) : n < ω} is consistent; but for all µ, η ∈ 2<ω, if µˆ0 ≺ η then {ϕ(x, aµˆ1), ϕ(x, aη)} is inconsistent.

A formula ϕ(x, y) has SOP2 if there are tuples (aη)η∈2<ω and some k ∈ Z+ such that for all σ ∈ 2ω,

{ϕ(x, aσ|n) : n < ω} is consistent; but for all incomparable µ, η ∈ 2<ω, {ϕ(x, aµ), ϕ(x, aη)} is inconsistent.

The goal of this section is to prove the following chain of implications (when Q ⇒ R is written with no

other information, we read this as “if T has Q then T has R”).

Theorem 1.4.

sOP⇒ SOP⇒ . . .⇒ SOPn+1 ⇒ SOPn ⇒ . . .⇒ SOP3 ⇒ (TP1 ⇔ SOP2)⇒ SOP1 ⇒ TP⇒ OP .
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Proposition 1.5. sOP⇒ SOP.

Proof. Suppose ϕ(x, y), with (ai)i<ω, witnesses sOP. Let l(x1) = l(x2) = l(y) and define

ψ(x1, x2) := ∀x(ϕ(x, x1)→ ϕ(x, x2)) ∧ ∃x(ϕ(x, x2) ∧ ¬ϕ(x, x1)).

By assumption, |= ψ(ai, aj) for all i < j. Suppose, towards a contradiction, that we have n ≥ 3 and b1, . . . , bn

such that

|= ψ(b1, b2) ∧ . . . ∧ ψ(bn−1, bn) ∧ ψ(bn, b1).

If Bi = ψ(M, bi) for 1 ≤ i ≤ n, then we have B1 ( B2 ( . . . ( Bn ( B1, which is a contradiction. Therefore

ψ(x1, x2), with (ai)i<ω, witnesses SOP. �

Proposition 1.6. SOP⇒ SOPn for all n ≥ 3.

Proof. Follows by definition. �

Proposition 1.7. For n ≥ 3, SOPn+1 ⇒ SOPn.

Proof. Suppose T has SOPn+1, witnessed by ϕ(x, y) and (ai)i<ω. Define

ψ(x1, x2, y1, y2) := ϕ(x1, x2) ∧ ϕ(x2, y1) ∧ ϕ(x2, y2) ∧ ϕ(y1, y2).

If i < j then |= ψ(a2i, a2i+1, a2j , a2j+1). Suppose, towards a contradiction, that (b1,0, b1,1), . . . , (bn,0, bn,1)

are such that

M |= ψ(b1,0, b1,1, b2,0, b2,1) ∧ . . . ∧ ψ(bn−1,0, bn−1,1, bn,0, bn,1) ∧ ψ(bn,0, bn,1, b1,0, b1,1).

Then we have

M |= ϕ(b1,0, b1,1) ∧ ϕ(b1,1, b2,1) ∧ . . . ∧ ϕ(bn−1,1, bn,1) ∧ ϕ(bn,1, b1,0),

contradicting that ϕ(x, y) SOPn+1. Therefore ψ(x1, x2, y1, y2), with (a2i, a2i+1)i<ω, witnesses SOPn. �

Proposition 1.8. SOP3 ⇒ SOP2.

Proof. [2] Suppose ϕ(x, y), with (ai)i<ω, witnesses SOP3. We have |= ϕ(ai, aj) for all i < j. By compactness,

we can obtain (bq)q∈Q such that |= ϕ(bq, br) for all q < r. Set z = (y1, y2) and define

ψ(x, z) := ϕ(y1, x) ∧ ϕ(x, y2).

We define (cη)η∈2<ω inductively by c∅ = (b0, b1), and if cη = (bq, br), with q < r, then

cηˆi =

 (bq, b 1
3 (r−q)

) i = 0

(b 2
3 (r−q)

, br) i = 1
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We claim that ψ(x, z), with (cη)η∈2<ω , witnesses SOP2. To this end, suppose σ ∈ 2ω and n < ω. There are

0 = q0 < . . . < qn < rn < rn−1 < . . . < r0 = 1 such that for 0 ≤ i ≤ n,

cσ|i = (bqi , bri).

If qn < q < rn then |= ϕ(bqi , bq)∧ϕ(bq, bri) for all 0 ≤ i ≤ n. Thus {ψ(x, cσ|i) : 0 ≤ i ≤ n} is satisfiable, and

so {ψ(x, cσ|n) : n < ω} is consistent by compactness.

Now suppose µ, η ∈ 2<ω are incomparable. Then, without loss of generality, we have q < r < s < t such

that

cµ = (bq, br) and cη = (bs, bt).

If d satisfies {ψ(x, cµ), ψ(x, cη)} then we have

ϕ(d, br) ∧ ϕ(br, bs) ∧ ϕ(bs, d),

contradicting that ϕ(x, y) witnesses SOP3. Therefore {ψ(x, cµ), ψ(x, cη)} is inconsistent. �

Proposition 1.9. SOP2 ⇔ TP1.

Proof. [3] Suppose ϕ(x, y), with (aη)η∈2<ω , witnesses SOP2. Define h : ω<ω −→ 2<ω inductively by h(∅) = ∅

and for i < ω,

h(η î) = h(η)̂ (1)iˆ0.

If η ≺ µ, say µ = η (̂n1, . . . , nk) with ni ∈ ω, then h(µ) = h(η)̂ (1)
∑
niˆ0 so h(η) ≺ h(µ). Thus if σ ∈ ωω,

we may define h(σ) :=
⋃
n<ω h(σ|n) ∈ 2ω.

By assumption, {ϕ(x, ah(σ)|n) : n < ω} is consistent. If η, µ ∈ ω<ω are incomparable then, without loss

of generality, there are γ, η0, µ0 ∈ ω<ω and i < j such that η = γ î̂ η0 and µ = γ ĵˆµ0. It follows that

there are η1, µ1 ∈ 2<ω such that h(η) = h(γ)̂ (1)iˆ0ˆη1 and h(µ) = h(γ)̂ (1)jˆ0ˆµ1. Therefore h(η) and h(µ)

are incomparable, and so {ϕ(x, ah(η)), ϕ(x, ah(µ))} is inconsistent. In conclusion ϕ(x, y) with (ah(η))η∈ω<ω ,

witnesses TP1.

Conversely, if ϕ(x, y), with (aη)η∈ω<ω , witnesses TP1, then clearly ϕ(x, y), with (aη)η∈2<ω , witnesses

SOP2. �

Proposition 1.10. SOP2 ⇒ SOP1.

Proof. Suppose ϕ(x, y), with (aη)η∈2<ω , witnesses SOP2. For all µ, η ∈ 2<ω, if µˆ0 ≺ η then µˆ1 and

η are incomparable, and so {ϕ(x, aµˆ1), ϕ(x, aη)} is inconsistent. Thus ϕ(x, y), with (aη)η∈2<ω , witnesses

SOP1. �

Proposition 1.11. SOP1 ⇒ TP.
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Proof. [2] Suppose ϕ(x, y), with (aη)η∈2<ω , witnesses SOP1. Define h : ω<ω −→ 2<ω inductively such that

h(∅) = ∅ and for i < ω,

h(η î) = h(η)̂ (0)iˆ1.

For η ∈ ω<ω, set bη = ah(η). As in the proof of Proposition 1.9, µ ≺ η implies h(µ) ≺ h(η). For σ ∈ ωω,

define h(σ) =
⋃
n<ω h(σ|n). Then {ϕ(x, bσ|n) : n < ω} ⊆ {ϕ(x, ah(σ)|n) : n < ω}, so {ϕ(x, bσ|n) : n < ω} is

consistent.

Now fix η ∈ ω<ω and suppose i < j. Then h(η)̂ (0)i ≺ h(η ĵ) and h(η î) = h(η)̂ (0)iˆ1, so

{ϕ(x, ah(ηˆi)), ϕ(x, ah(ηˆj))}

is inconsistent by assumption. Therefore {ϕ(x, bηˆi), ϕ(x, bηˆj)} is inconsistent, and so {ϕ(x, bηˆn) : n < ω}

is 2-inconsistent. Thus ϕ(x, y), with (bη)η∈ω<ω , witnesses TP. �

The only remaining implication in the statement of Theorem 1.4 is TP ⇒ OP. This argument is a bit

more technical than the previous one, and we break it into two steps, the proofs of which are taken from [4].

Lemma 1.12. Suppose ϕ(x, y) witnesses TP with respect to k ≥ 2. Then there is an infinite set A such that

|Sϕ(A)| > |A|.

Proof. [4, II] Let κ be an infinite cardinal such that κω > max{2ω, κ}. By compactness we may assume that

we have (aη)η∈κ<ω such that for all σ ∈ κω,

πσ = {ϕ(x, aσ|n) : n < ω}

is consistent; and for all η ∈ κ<ω, {ϕ(x, aηˆi) : i < κ} is k-inconsistent. Given σ ∈ κω, construct Fσ ⊆ κω

such that

(i) σ ∈ Fσ;

(ii)
⋃
τ∈Fσ πτ is consistent.

(iii) for all ρ ∈ κω\Fσ, πρ ∪
⋃
τ∈Fσ πτ is inconsistent.

Let Tσ = {τ |n : n < ω, τ ∈ Fσ}. Then Tσ is a tree. Suppose, towards a contradiction, that there is η ∈ Tσ
and distinct i1, . . . , ik ∈ κ such that η îj ∈ Tσ for all j. Then there are τ1, . . . , τk ∈ Fσ such that η îj ≺ τj ,

which is a contradiction since {ϕ(x, a|ηˆij ) : 1 ≤ j ≤ k} is inconsistent. It follows that Tσ can be embedded

into kω. In particular, |Fσ| ≤ 2ω. Since κω > 2ω, there is F ⊆ κω such that |F | = κω and Fσ 6= Fτ for all

distinct σ, τ ∈ F .

Let A = (aη)η∈κ<ω and, for σ ∈ F , let pσ ∈ Sϕ(A) be a complete ϕ-type containing
⋃
τ∈Fσ πτ . If

σ, τ ∈ F are distinct then, without loss of generality, there is some ρ ∈ Fσ\Fτ . Then πρ ⊆ pσ and pτ ∪ πρ is

inconsistent. Therefore pσ 6= pτ , and so |Sϕ(A)| ≥ κω > κ = |A|. �
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Definition 1.13. Given formulas ϕ(x, y), ψ(y, x), a type p (ψ,ϕ)-splits over a set B if there are a, b ∈

dom(p) such that tpψ(a/B) = tpψ(b/B), but ϕ(x, a),¬ϕ(x, b) ∈ p.

Proposition 1.14. TP⇒ OP.

Proof. [4, II] Suppose ϕ(x, y) witnesses TP. By Lemma 1.12, there is some infinite cardinal κ, and a set A

of size κ, such that |Sϕ(A)| > κ. Let (ci)i<κ+ be realizations of κ+-many distinct ϕ-types in Sϕ(A). Set

ψ(y, x) = ϕ(x, y). Let A0 = A and, given An of size κ, define

An+1 = An ∪ {a : a |= p, p ∈ Sϕ(B) ∪ Sψ(B), B ⊆ An is finite}.

There are countably many finite subsets of An, and if B is finite then Sϕ(B) ∪ Sψ(B) is finite, so An+1 still

has size κ.

Claim : There is some i < κ+ such that for all n < ω and for all B ⊆ An finite, tpϕ(ci/An+1) (ψ,ϕ)-splits

over B.

Proof : Suppose not. Then for all i < κ+ there is a pair (n,B) such that B ⊆ An is finite and tpϕ(ci/An+1)

does not (ψ,ϕ)-split over B. There are only countably many such pairs (n,B). Thus, without loss of

generality, there is a pair (n,B) such that B ⊆ An is finite and for all i < κ+, tp(ci/An+1) does not (ψ,ϕ)-

split over B. By definition, there is a finite set C such that B ⊆ C ⊆ An+1 and all types in Sϕ(B) ∪ Sψ(B)

are realized in C. Again, Sϕ(C) is finite, so without loss of generality we may assume tpϕ(ci/C) = tpϕ(cj/C)

for all i, j < κ+.

Consider c0, c1. By assumption, there is some a ∈ A0 such that |= ϕ(c1, a)↔ ¬ϕ(c0, a). Let a′ ∈ C such

that tpψ(a′/B) = tpψ(a/B). For all i < κ+, tpϕ(ci/An+1) does not (ψ,ϕ)-split over B, so it follows that

tpϕ(ci/C) does not (ψ,ϕ)-split over B. Since tpψ(a/B) = tpψ(a′/B), we have ϕ(x, a) ∈ tpϕ(ci/C) if and

only if ϕ(x, a′) ∈ tpϕ(ci/C). In other words, |= ϕ(ci, a)↔ ϕ(ci, a
′), for all i < κ+. Altogether, we have

|= ϕ(c0, a)↔ ϕ(c0, a
′)↔ ϕ(c1, a

′)↔ ϕ(c1, a)↔ ¬ϕ(c0, a),

which is a contradiction.�

By the claim, we have i < κ+ such that for all n < ω and for all B ⊆ An finite, tp(ci/An+1) (ψ,ϕ)-splits

over B. Set c = ci. Then tpϕ(c/A1) (ψ,ϕ)-splits over ∅, so there are a0, b0 ∈ A1 such that tpψ(a0) = tpψ(b0)

with ϕ(x, a0),¬ϕ(x, b0) ∈ tp(c/A1). Now {a0, b0} ⊆ A1 so there is some d0 ∈ A2 realizing tpϕ(c/a0, b0).

Suppose n > 0 and we are given (ai, bi, di)i<n such that for all i < n,

(i) tpψ(ai/{dj : j < i}) = tpψ(bi/{dj : j < i});

(ii) di ∈ A2i+2 realizes tpϕ(c/{aj , bj : j ≤ i});

(iii) |= ϕ(c, ai) ∧ ¬ϕ(c, bi).
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Then tpϕ(c/A2n+1) (ψ,ϕ)-splits over {di : i < n} ⊆ A2n so there are an, bn ∈ A2n+1 such that tpψ(an/{di :

i < n}) = tpψ(bn/{di : i < n}) and ϕ(x, an),¬ϕ(x, bn) ∈ tpϕ(c/A2n+1). But tpϕ(c/{ai, bi : i ≤ n}) is

realized by some dn ∈ A2n+2. This process generates (an, bn, dn)n<ω such that for all n < ω,

(i) tpψ(an/{di : i < n}) = tpψ(bn/{di : i < n});

(ii) dn ∈ A2n+2 realizes tpϕ(c/{ai, bi : i ≤ n});

(iii) |= ϕ(c, an) ∧ ¬ϕ(c, bn).

Note first that for all j ≤ i, we have |= ϕ(di, aj) ∧ ¬ϕ(di, bj). Moreover, for all i < j,

|= ϕ(di, aj)↔ ψ(aj , di)↔ ψ(bj , di)↔ ϕ(di, bj).

Therefore we have

|= ϕ(di, aj)↔ ϕ(di, bj) ⇔ i < j.

Altogether, if z = (y1, y2) and θ(x, z) := ϕ(x, y1) ↔ ϕ(x, y2), then θ(x, z), with (di)i<ω and (ai, bi)i<ω,

witnesses OP. �

This completes the proof of Theorem 1.4.

2. Further Properties

We now define two more properties, which do not fit exactly into the chain in Theorem 1.4.

Definition 2.1. A formula ϕ(x, y) has the independence property, IP, if there are (ai)i<ω and (cσ)σ∈2ω

such that |= ϕ(ai, cσ) if and only if σ(i) = 1.

A formula ϕ(x, y) has the tree property 2, TP2, if there are (ai,j)i,j<ω such that for any σ ∈ ωω,

{ϕ(x, an,σ(n)) : n < ω} is consistent; but for all j < k < ω, {ϕ(x, ai,j), ϕ(x, ai,k)} is inconsistent.

Proposition 2.2. IP⇒ OP.

Proof. Suppose ϕ(x, y), with (ai)i<ω and (cσ)σ∈2ω , witnesses IP. Given i < ω, let σi : ω −→ ω such that

σi(j) = 0 if and only if i ≤ j. Then we have

|= ϕ(ai, cσj ) ⇔ σj(i) = 1 ⇔ i < j.

So ϕ(x, y), with (ai)i<ω and (cσi)i<ω, witnesses OP. �

Proposition 2.3. TP2 ⇒ TP.
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Proof. [1] Suppose ϕ(x, y), with (ai,j)i,j<ω, witnesses TP2. Fix an injection f : ω × ω −→ ω. Set b∅ = a0,0,

and for i < ω, set b(j) = a1,j . Suppose 0 < n < ω and for all η ∈ ωn we have j < ω such that bη = an,j . Let

(bηi)i<ω be an enumeration of ωn and for j < ω define bηiˆj = an+1,f(i,j).

We claim that ϕ(x, y), with (bη)η∈ω<ω , witnesses TP with respect to 2. If σ ∈ ωω then for all n < ω,

bσ|n = an,j for some j < ω. So if τ : ω −→ ω is such that τ(n) = j, we have that

{ϕ(x, bσ|n) : n < ω} = {ϕ(x, an,τ(n)) : n < ω}

is consistent. Furthermore suppose η ∈ ω<ω and j < k < ω. If |η| = n, then bηˆj = an+1,f(i,j) and

bηˆk = an+1,f(i,k), where η = ηi in the enumeration of ωn. Since f is injective, it follows that f(i, j) 6= f(i, k),

and so

{ϕ(x, bηˆj), ϕ(x, bηˆk)} = {ϕ(x, an+1,f(i,j)), ϕ(x, an+1,f(i,k))}

is inconsistent by assumption. �

Proposition 2.4. TP2 ⇒ IP.

Proof. [1] Suppose ϕ(x, y), with (ai,j)i,j<ω, witnesses TP2. Let σ ∈ 2ω. By assumption,

{ϕ(x, ai,1) : σ(i) = 1} ∪ {ϕ(x, ai,0) : σ(i) = 0}

is consistent, say satisfied by some bσ. Furthermore, {ϕ(x, ai,0), ϕ(x, ai,1)} is inconsistent for all i < ω, and

so it follows that bσ satisfies

{ϕ(x, ai,1) : σ(i) = 1} ∪ {¬ϕ(x, ai,1) : σ(i) = 0}.

Therefore ϕ(x, y), with (ai,1)i<ω and (bσ)σ∈2ω , witnesses IP. �

Altogether, we have shown the following:

Theorem 2.5.

sOP⇒ SOP⇒ . . .⇒ SOPn+1 ⇒ SOPn ⇒ . . .⇒ SOP3 ⇒ (TP1 ⇔ SOP2)⇒ SOP1 ⇒ TP⇒ OP

⇒

IP⇒

⇒

TP2

Remark 2.6. In [4], the following equivalences are proved,

OP⇔ (IP or sOP) and TP⇔ (TP1 or TP2).
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We detail these proofs in the last section.

Recall again that a theory T is stable if and only if T does not have OP; and T is simple if and only if T

does not have TP.

3. Alternate Definitions

In the literature, it is easy to find sources with slightly different definitions of the properties discussed

above. While this can sometimes make a nominal difference when considering the property with respect to

the formula, it usually does not make any difference when considering the property with respect to a theory.

Theorem 3.1. Let n ≥ 3. Then T has SOPn if and only if there is a formula ϕ(x, y), with l(x) = l(y),

such that for all k ≤ n,

|= ¬∃x1, . . . , xk(ϕ(x1, x2) ∧ . . . ∧ ϕ(xk−1, xk) ∧ ϕ(xk, x1)),

and there are (ai)i<ω such that |= ϕ(ai, ai+1) for all i < ω.

Proof. Suppose ϕ(x, y), with (ai)i<ω, witnesses SOPn. Then for all k < n, there are ϕk(x, y) and (aki )k<ω

witnessing SOPk if k ≥ 3 and OP (respectively an infinite model) if k = 2 (resp. k = 1). Define

ψ(x1, . . . , xn, y1, . . . , yn) := ϕ(xn, yn) ∧
∧
k<n

ϕk(xk, yk).

Clearly, for all k ≤ n, we have

|= ¬∃x̄1, . . . , x̄k(ψ(x̄1, x̄2) ∧ . . . ∧ ψ(x̄k−1, x̄k) ∧ ψ(x̄k, x̄1)),

Moreover, if āi = (a1i , . . . , a
n−1
i , ani ), then |= ψ(āi, āi+1) for all i < ω.

Conversely, suppose we have ϕ(x, y), with l(x) = l(y) and (ai)i<ω such that |= ϕ(ai, ai+1) for all i < ω

and for all k ≤ n,

|= ¬∃x1, . . . , xk(ϕ(x1, x2) ∧ . . . ∧ ϕ(xk−1, xk) ∧ ϕ(xk, x1)).

�

Theorem 3.2. T has sOP if and only if there is a formula ψ(x, y), with l(x) = l(y), defining a partial order

(reflexive, antisymmetric, transitive) with infinite chains.

Proof. Suppose ϕ(x, y), with (ai)i<ω, witnesses that T has sOP. Define the formula,

ψ(y1, y2) := y1 = y2 ∨
(
∀x(ϕ(x, y1)→ ϕ(x, y2)) ∧ ∃x(¬ϕ(x, y1) ∧ ϕ(x, y2))

)
.
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In other words, for all b, c ∈M,

|= ψ(b, c) ⇔ b = c or ϕ(M, b) ( ϕ(M, c).

Therefore ψ(y1, y2) defines a partial order. By assumption we have ϕ(M, ai) ( ϕ(M, aj) for all i < j, so

(ai)i<ω is an infinite chain with respect to ψ(y1, y2).

Conversely, suppose we have ψ(x, y) defining a partial order with infinite chains. Let (ai)i<ω be an infinite

chain, i.e., |= ψ(ai, aj) and ai 6= aj for all i < j. We claim that ψ(x, y), with (ai)i<ω witnesses sOP. Indeed,

if i < j then we have |= ¬ψ(aj , ai) ∧ ψ(aj , aj). On the other hand, if c ∈M such that |= ¬ψ(c, ai) ∧ ψ(c, aj)

then i < j, since otherwise we would have |= ψ(c, aj) ∧ ψ(aj , ai), and so |= ψ(c, ai) by transitivity. �

4. Equivalence Theorems

Definition 4.1. A formula ϕ(x, y) is unstable if there is some infinite set A such that |Sϕ(A)| > |A|.

Recall that T is stable if and only if no formula is unstable.

Lemma 4.2. A formula ϕ(x, y) is unstable if and only if it has OP.

Proof. [4, II] Suppose ϕ(x, y) is unstable. As in the proof of Proposition 1.14, there are (ai, bi, di)i<ω such

that

|= ϕ(di, aj)↔ ϕ(di, bj) for all i < j, and |= ϕ(di, aj) ∧ ¬ϕ(di, bj) for all j ≤ i.

Let [ω] = {(i, j) : i < j < ω} and define f : [ω] −→ {0, 1} such that f(i, j) = 0 if and only if |= ϕ(di, aj).

By Ramsey’s Theorem, there is an infinite subset I ⊆ ω such that f is constant on {(i, j) ∈ I2 : i < j}. By

renaming, we may assume f is constant on [ω]. If f ≡ 0 then we have |= ϕ(di, bj) if and only if i < j, so

ϕ(x, y) has OP. If f ≡ 1 then we have |= ¬ϕ(di, aj) if and only if i < j. Define

∆ = T ∪ {ϕ(xi, yj) : i < j < ω} ∪ {¬ϕ(xi, yj) : j ≤ i < ω}.

If ∆0 ⊆ ∆ is finite then let n be maximal such that xn or yn occurs as a variable in ∆0. For i ≤ n, interpret

xi as dn−i and yj as an−j , which satisfies ∆0. Therefore ∆ is satisfied by compactness and so ϕ(x, y) has

OP.

Suppose ϕ(x, y) has OP. By compactness we may assume OP is witnessed by (aq)q∈Q and (bq)q∈Q. Note

that for all q < r we have |= ϕ(aq, br)∧¬ϕ(aq, bq), so if A = {bq : q < ω} then A is countably infinite. Given

t ∈ R\Q, define the ϕ-type pt = {ϕ(x, bq) : q > t} ∪ {¬ϕ(x, bq) : q < t}. By assumption and compactness,

each pt is consistent. If s < t are irrational and q ∈ Q with s < q < t then ϕ(x, bq) ∈ ps and ¬ϕ(x, bq) ∈ pt.

Therefore |Sϕ(A)| > |A| and so ϕ(x, y) is unstable. �
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Theorem 4.3. A formula ϕ(x, y) is unstable if and only if θ(y, x) := ϕ(x, y) has IP or, for some n < ω and

η ∈ 2n

ψη(x, y0, . . . , yn−1) :=
∧

η(i)=1

ϕ(x, yi) ∧
∧

η(i)=0

¬ϕ(x, yi)

has sOP.

Proof. [4, II] First, if ϕ(x, y) has IP then it is unstable by Proposition 2.2 and Lemma 4.2. On the other

hand suppose there is some n < ω and η ∈ 2n such that ψη(x, ȳ) has sOP, witnessed by (ai)i<ω. If bi is such

that |= ¬ψη(bi, ai) ∧ ψη(bi, ai+1), then |= ψη(bi, aj) if and only if i < j, so ψη(x, y) is unstable by Lemma

4.2. Let A be infinite such that |Sψη (A)| > |A|. Given p ∈ Sψη (A), let ap |= p and define

p̂ = {ϕ(x, a) : a ∈ A, |= ϕ(ap, a)} ∪ {¬ϕ(x, a) : a ∈ A, |= ¬ϕ(ap, a)}.

Clearly, each p̂ is a consistent ϕ-type. Furthermore, if p, q ∈ Sψn(A) and p̂ = q̂, then p = q. Therefore

|Sϕ(A)| ≥ |Sψn(A)| > |A|, and so ϕ(x, y) is unstable.

Conversely, suppose ϕ(x, y) is unstable. By Lemma 4.2, there are (ai)i<ω and (bi)i<ω witnessing that

ϕ(x, y) has OP. By replacing (ai, bi)i<ω with a realization of EM((ai, bi)i<ω), we may assume (ai, bi)i<ω is

indiscernible. Suppose that for all n < ω and µ ∈ 2n we have

|= ∃x

 ∧
µ(i)=1

ϕ(x, bi) ∧
∧

µ(i)=0

¬ϕ(x, bi)

 .

Then for any σ ∈ 2ω, we have a solution cσ to {ϕ(x, bi) : σ(i) = 0} ∪ {¬ϕ(x, bi) : σ(i) = 1} by compactness.

Setting θ(y, x) = ϕ(x, y), it follows that θ(y, x), with (bi)i<ω and (cη)η∈2n , witnesses IP. Therefore we may

assume that there is some n < ω and µ ∈ 2n such that

|= ¬∃x

 ∧
µ(i)=1

ϕ(x, bi) ∧
∧

µ(i)=0

¬ϕ(x, bi)

 .

Let X0 = {i : µ(i) = 1} and set m = |X0|. Note that 0 < m < n. For some N < ω, we construct sets

X0, . . . , XN satisfying the following properties:

(i) XN = {n−m,n−m+ 1, . . . , n− 1};

(ii) for all k ≤ N , |Xk| = m and Xk ⊆ {0, . . . , n− 1};

(iii) for all k < N there is some l ∈ Xk such that Xk+1 = (Xk\{l}) ∪ {l + 1} (note that altogether this

implies l ∈ Xk\Xk+1 and l + 1 ∈ Xk+1\Xk).

This can be done in the following way. Let X0 = {l1, . . . , lm} with l1 < . . . < lm. Then li ≤ n−1+m−i for all

i. The next set in the sequence is obtained from the current one by choosing i maximal with li < n−1+m−i

and replacing li with li + 1. Eventually we find li = n− 1 +m− i for all i.
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We have

|= ¬∃x

 ∧
i∈X0

ϕ(x, bi) ∧
∧

i 6∈X0, i<n

¬ϕ(x, bi)

 and |= ∃x

 ∧
i∈XN

ϕ(x, bi) ∧
∧

i 6∈XN ,i<n

¬ϕ(x, bi)

 ,

where the second statement is witnessed with x = an−m−1. Therefore there is some k < N such that

|= ¬∃x

 ∧
i∈Xk

ϕ(x, bi) ∧
∧

i 6∈Xk, i<n

¬ϕ(x, bi)

 and |= ∃x

 ∧
i∈Xk+1

ϕ(x, bi) ∧
∧

i6∈Xk+1,i<n

¬ϕ(x, bi)

 ,

Let l ∈ Xk be such that Xk+1 = (Xk\{l}) ∪ {l + 1}. Set

ψ(x, y, y0, . . . , yl−1, yl+2, . . . , yn−1) := ϕ(x, y) ∧
∧

i∈Xk\{l}

ϕ(x, yi) ∧
∧

i 6∈Xk+1∪{l}, i<n

¬ϕ(x, yi).

For r < ω, let b̄r = (b0, . . . , bl−1, bl+2+r, . . . , bn−1+r). Then we have |= ∃x(ψ(x, bl+1, b̄0) ∧ ¬ϕ(x, bl)). Fixing

r < ω, for all i, j < ω with l ≤ i < j < l + 2 + r, we have by indiscernibility

|= ∃x(ψ(x, bj , b̄r) ∧ ¬ϕ(x, bi)).

But |= ¬∃x(ψ(x, bl, b̄0) ∧ ¬ϕ(x, bl+1)) so, similarly, for r < ω and l ≤ i < j < l + 2 + r, we have

|= ¬∃x(ψ(x, bi, b̄r) ∧ ¬ϕ(x, bj)).

It follows that for all r < ω and l ≤ i < j < l + 2 + r,

|= ∃x(ψ(x, bj , b̄r) ∧ ¬ψ(x, bi, b̄r)) and |= ¬∃x(ψ(x, bi, b̄r) ∧ ¬ψ(x, bj , b̄r)).

For r < ω and i < r, let āri = (bl+i, b̄r). Then for all r < ω we have

|= ∃x(¬(ψ(x, āri ) ∧ ϕ(x, ārj) ⇔ i < j.

By compactness, ψ(x, y) has sOP. Clearly, ψ is of the desired form ψη, for some η ∈ 2<ω. �

Corollary 4.4. OP⇔ (IP or sOP). �
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