Model theory and combinatorics of homogeneous metric spaces

Gabriel Conant
UIC

March 25, 2015
Annual North American Meeting of the ASL
University of Illinois at Urbana-Champaign
Definition

(1) Let $\mathcal{L}_{om} = \{\oplus, \leq, 0\}$ be the language of ordered monoids.
(2) We refer to a totally and positively ordered commutative monoid as a **distance monoid**.

Given a distance monoid \mathcal{R}, we have the natural notion of \mathcal{R}-**metric spaces**.

Definition

Given a countable distance monoid \mathcal{R}, an \mathcal{R}-**Urysohn space** is a countable \mathcal{R}-metric space (X, d) such that:

(i) (**ultrahomogeneity**) every isometry between finite subspaces of X extends to a total isometry of X;

(ii) (**universality**) every finite \mathcal{R}-metric space is isometric to a subspace of X.
Fact (Sauer)

The existence of \mathcal{U}_R is equivalent to associativity of \oplus.

Examples:

- If $Q = (\mathbb{Q}_{\geq 0}, +, \leq, 0)$ then \mathcal{U}_Q is the rational Urysohn space. Cameron-Vershik, Melleray, Solecki, Tent-Ziegler

- If $R = (R, \leq, 0)$ is a countable linear order, and $u \oplus v = \max\{u, v\}$, then \mathcal{U}_R exists and is an ultrametric Urysohn space. Gao-Shao, Nguyen Van Thé

- Fix $0 \in S \subseteq \mathbb{N}$ and, for $u, v \in S$, define

$$u +_S v = \max\{x \in S : x \leq u + v\}.$$

Let $S = (S, +_S, \leq, 0)$. \mathcal{U}_S exists if and only if $+_S$ is associative. Casanovas-Wagner, Delhommé-Laflamme-Pouzet-Sauer, Nguyen Van Thé, Sauer

- In the last example, if $S = \{0, 1, 2\}$ then \mathcal{U}_S is the countable random graph.
Given a countable distance monoid \(\mathcal{R} \), we fix a relational language

\[
\mathcal{L}_\mathcal{R} = \{ d(x, y) \leq r : r \in R \},
\]
where each \(d(x, y) \leq r \) is a binary relation.

Let \(\text{Th}(\mathcal{U}_\mathcal{R}) \) be the complete \(\mathcal{L}_\mathcal{R} \)-theory of \(\mathcal{U}_\mathcal{R} \).

Theorem (C.)

There is a distance monoid extension \(\mathcal{R}^* \) of \(\mathcal{R} \) such that any model \(M \models \text{Th}(\mathcal{U}_\mathcal{R}) \) is an \(\mathcal{R}^* \)-metric space under a “type-definable” \(\mathcal{R}^* \)-metric.

Idea:

- \(\mathcal{R}^* \) is the set of quantifier-free 2-types consistent with \(\text{Th}(\mathcal{U}_\mathcal{R}) \).
- Given \(M \models \text{Th}(\mathcal{U}_\mathcal{R}) \) and \(a, b \in M \), \(d(a, b) \) is the quantifier-free 2-type of \((a, b) \).
- Given \(\alpha, \beta \in \mathcal{R}^* \), \(\alpha \oplus \beta \) is the largest \(\gamma \in \mathcal{R}^* \) such that a triangle with distances \(\alpha, \beta, \gamma \) is consistent.
Lemma (C.)

If M is a saturated model of $\text{Th}(\mathcal{U}_R)$, of cardinality κ, then M is a κ^+-universal \mathcal{R}^*-metric space.

In order for M to be κ-homogeneous as an \mathcal{R}^*-metric space, we need quantifier elimination for $\text{Th}(\mathcal{U}_R)$.

Theorem (C.)

$\text{Th}(\mathcal{U}_R)$ has quantifier elimination if and only if for all $r \in R$, $\alpha \in R^*$, if α has no immediate predecessor in R^* then

$$\alpha \oplus r = \sup\{x \oplus r : x < \alpha\}.$$

Definition

A countable distance monoid \mathcal{R} is **Urysohn** if $\text{Th}(\mathcal{U}_R)$ has quantifier elimination.
Definition

A property P of \mathcal{R}-Urysohn spaces is **axiomatizable** if there is an $\mathcal{L}_{\omega_1, \omega}$-sentence φ_P in \mathcal{L}_{om} such that, given a countable Urysohn monoid \mathcal{R},

$$\mathcal{U}_R \text{ has property } P \text{ if and only if } \mathcal{R} \models \varphi_P.$$

If φ_P is an $\mathcal{L}_{\omega, \omega}$-sentence then P is **finitely axiomatizable**.

Definition

The **archimedean rank** of \mathcal{R}, $\text{arch}(\mathcal{R})$, is the minimum $n < \omega$ such that, for all $r_0 \leq r_1 \leq \ldots \leq r_n$ in \mathcal{R},

$$r_0 \oplus r_1 \oplus \ldots \oplus r_n = r_1 \oplus \ldots \oplus r_n.$$

If no such n exists, set $\text{arch}(\mathcal{R}) = \omega$.

Gabriel Conant (UIC) Generalized Metric Spaces March 25, 2015 6 / 10
Theorem (C.)

Suppose \mathcal{R} is a Urysohn monoid.

(a) $\text{Th}(\mathcal{U}_\mathcal{R})$ is stable if and only if $\text{arch}(\mathcal{R}) \leq 1$ (finitely axiomatizable). I.e., $\text{Th}(\mathcal{U}_\mathcal{R})$ is stable if and only if $\mathcal{U}_\mathcal{R}$ is ultrametric.

(b) $\text{Th}(\mathcal{U}_\mathcal{R})$ is simple if and only if $\text{arch}(\mathcal{R}) \leq 2$ (finitely axiomatizable).

(c) $\text{Th}(\mathcal{U}_\mathcal{R})$ does not have the strict order property.

(d) $\text{Th}(\mathcal{U}_\mathcal{R})$ is NSOP_n if and only if $\text{arch}(\mathcal{R}) < n$ (finitely axiomatizable).

(e) $\text{Th}(\mathcal{U}_\mathcal{R})$ is superstable if and only if $\text{arch}(\mathcal{R}) \leq 1$ and \mathcal{R} is well-ordered (not axiomatizable).

(f) "$\text{Th}(\mathcal{U}_\mathcal{R})$ is supersimple" is not axiomatizable.

The proofs of these results use a geometric characterization of nonforking independence, along with a fine analysis of amalgamation of indiscernible sequences.
Definition

(1) Given $n > 0$, let $\text{DM}(n)$ be the number of distance monoids with n nontrivial elements.

(2) Given $n, k > 0$, let $\text{DM}(n, k)$ be the number of distance monoids with n nontrivial elements and archimedean rank k.

Proposition (C.)

(a) **Upper bound:** $\text{DM}(n) = O(c^{n^2})$, where $c = \sqrt{\frac{27}{16}} \approx 1.299$. (Uses Zeilberger’s proof of the *Alternating Sign Matrix Conjecture*.)

(b) If $n < k$ then $\text{DM}(n, k) = 0$.

(c) If $n > 0$ then $\text{DM}(n, 1) = 1$ (witness: $\{0, 1, \ldots, n\}, \text{max}, \leq, 0$).

(d) If $n > 0$ then $\text{DM}(n, n) = 1$ (witness: $\{0, 1, \ldots, n\}, +, \leq, 0$).
Theorem (C., continuation of Nguyen Van Thé)

<table>
<thead>
<tr>
<th>rank</th>
<th>size</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>14</td>
<td>451</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>33</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>DM(n)</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>22</td>
<td>94</td>
<td>451</td>
<td></td>
</tr>
</tbody>
</table>

thank you