Forking and Dividing in Random Graphs

Gabriel Conant

UIC

Graduate Student Conference in Logic
University of Notre Dame
April 28-29, 2012
Definitions

(a) A formula $\varphi(\bar{x}, \bar{b})$ **divides** over a set $A \subset \mathcal{M}$ if there is a sequence $(\bar{b}'_l)_{l<\omega}$ and $k \in \mathbb{Z}^+$ such that $\bar{b}'_l \equiv_A \bar{b}$ for all $i < \omega$ and

$$\{\varphi(\bar{x}, \bar{b}'_l) : l < \omega\}$$

is k-inconsistent.

(b) A partial type **divides** over A if it proves a formula that divides over A.

(c) A partial type **forks** over A if it proves a finite disjunction of formulas that divide over A.

(d) Given a theory T and $\mathcal{M} \models T$, we define the ternary relations \downarrow^d and \downarrow on $\{\bar{c} \in \mathcal{M}\} \times \{A \subset \mathcal{M}\}^2$ by

$$\bar{c} \downarrow^d_A B \iff \text{tp}(\bar{c}/AB) \text{ does not divide over } A,$$

$$\bar{c} \downarrow_A B \iff \text{tp}(\bar{c}/AB) \text{ does not fork over } A.$$
Facts

Theorem

A partial type $\pi(\bar{x}, \bar{b})$ (with $\pi(\bar{x}, \bar{y})$ a type over A) divides over A if and only if there is a sequence $(\bar{b}^l)_{l<\omega}$ of indiscernibles over A with $\bar{b}^0 = \bar{b}$ and $\bigcup_{l<\omega} \pi(\bar{x}, \bar{b}^l)$ inconsistent.

Definition

A theory T is **simple** if there is some formula $\varphi(\bar{x}, \bar{y})$ with the tree property.

Theorem

A theory T is simple if and only if for all $B \subset M$ and $p \in S_n(B)$ there is some $A \subseteq B$ with $|A| \leq |T|$ such that p does not divide over A.
Setting

Let $\mathcal{L} = \{R\}$, where R is a binary relation symbol. We write xRy, rather than $R(x, y)$. If A and B are sets, we write ARB to mean that every point in A is connected to every point in B; and $A \not\subset R B$ to mean that no point in A is connected to any point in B.

We write $A \subset M$ to mean that A is a subset of M with $|A| < |M|$.

Given $A \subseteq M$, let $\mathcal{L}_A^0 \subseteq \mathcal{L}_A$ be the set of conjunctions of atomic and negated atomic formulas such that no conjunct is of the form $x_i = a$, for some variable x_i and $a \in A$. When we refer to formulas $\varphi(\bar{x}, \bar{y})$ in \mathcal{L}_A^0, we will assume no conjunct is of the form $x_i = x_j$ or $y_i = y_j$ for distinct i, j.

Let \mathcal{L}_A^R be the set of \mathcal{L}_A^0-formulas $\varphi(\bar{x}, \bar{y})$ containing no conjunct of the form $x_i = y_j$ for any i, j.
The Random Graph

We let \(T_0 \) be the theory of the random graph, i.e., \(T_0 \) contains

1. the axioms for nonempty graphs,

\[
\forall x \neg xRx \quad \forall x \forall y (xRy \leftrightarrow yRx) \quad \exists x \ x = x;
\]

2. “extension axioms” asserting that if \(A \) and \(B \) are finite disjoint sets of vertices then there is some \(c \) such that \(cRA \) and \(c \not\in RB \).

\(T_0 \) is a complete, \(\aleph_0 \)-categorical theory with quantifier elimination and no finite models.

We fix an uncountable saturated monster model \(M \models T_0 \) and define the ternary relation \(\downarrow \cap \) on \(\{\bar{c} \in M\} \times \{A \subseteq M\}^2 \) such that

\[
\bar{c} \downarrow_A B \Leftrightarrow \bar{c} \cap B \subseteq A.
\]
The Random Graph is Simple (first proof)

Theorem (Kim & Pillay)

A theory T is simple if and only if there is a ternary relation \downarrow^o satisfying automorphism invariance, extension, local and finite character, symmetry, transitivity, monotonicity, and independence over models. Moreover, in this case \downarrow^o, \downarrow^d, and \downarrow are all the same.

Independence over models: Let $M \models T$, $M \subseteq A$, B and $A \downarrow^o_M B$.
Suppose $\bar{a}, \bar{b} \in M$ such that $\bar{a} \equiv_M \bar{b}$, $\bar{a} \downarrow^o_M A$, and $\bar{b} \downarrow^o_M B$. Then there is $\bar{c} \in M$ such that $\text{tp}(\bar{a}/A) \cup \text{tp}(\bar{b}/B) \subseteq \text{tp}(\bar{c}/AB)$ and $\bar{c} \downarrow^o_M AB$.

Proposition

The ternary relation \downarrow^\cap satisfies all the necessary properties to witness that T_0 is simple. In particular, we have

$$\bar{c} \downarrow^\cap B \iff \bar{c} \cap B \subseteq A.$$
The Random Graph is Simple (second proof)

Lemma

Let $A \subseteq \mathbb{M}$, $\bar{b}, \bar{c} \in \mathbb{M}$ such that $\bar{c} \downarrow \bigcap_A \bar{b}$. If $(\bar{b}'_{l<\omega})$ is A-indiscernible, with $\bar{b}^0 = \bar{b}$, then there is $\bar{d} \in \mathbb{M}$ with $\bar{d} \downarrow \bigcap_A \bigcup_{l<\omega} \bar{b}'_{l}$ such that $\bar{d}b'_{l} \equiv_A \bar{c}b$ for all $l < \omega$.

Theorem

Suppose $B \subseteq \mathbb{M} \models T_0$ and $p \in S_n(B)$. Then p does not divide over $A = \{b \in B : \exists i x_i = b \in p(\bar{x})\}$.

1. A theory T is **supersimple** if for all $p \in S_n(B)$ there is some finite $A \subseteq B$ such that p does not divide over A. Therefore T_0 is supersimple.

2. (Kim) If $\downarrow \bigcap$ is replaced by \downarrow in the above lemma, the statement remains true in any simple theory.
Dividing in the Random Graph

Theorem

Let \(A \subset \mathbb{M} \models T_0, \, \varphi(\bar{x}, \bar{y}) \in \mathcal{L}_A^0, \) and \(\bar{b} \in \mathbb{M} \) such that \(\varphi(\bar{x}, \bar{b}) \) is consistent. Then \(\varphi(\bar{x}, \bar{b}) \) divides over \(A \) if and only if \(\varphi(\bar{x}, \bar{b}) \triangleleft x_j = b \) for some \(b \in \bar{b} \setminus A \).
The K_n-free Random Graph

For $n \geq 3$, we let T_n be the theory of the K_n-free random graph, i.e., T_n contains

1. the axioms for nonempty graphs;
2. a sentence asserting that the graph is K_n-free;
3. “extension axioms” asserting that if A and B are finite disjoint sets of vertices, and A is K_{n-1}-free, then there is some c such that $c \mathcal{R} A$ and $c \not\mathcal{R} B$.

T_n is a complete, \aleph_0-categorical theory with quantifier elimination and no finite models.
The K_n-free Random Graph is Not Simple (first proof)

Theorem

$\downarrow d$-independence over models fails in T_n.

Proof.

Claim:

If $\bar{b} \in M \setminus A$, $\bar{b} \not\models RA$, $l(\bar{b}) < n - 1$, and p is in $S_1(A\bar{b})$, then p does not divide over A.

So $a_i \downarrow_M \{a_j : j < i\}$ and $b_i \downarrow_M a_i$.

Clearly, $\{\text{tp}(b_i/\text{Ma}_i) : i < n\}$ cannot be amalgamated.
The K_n-free Random Graph is Not Simple (second proof)

Definition

Let $k \geq 3$. A theory T has the k-**strong order property**, SOP_k, if there is a formula $\varphi(\bar{x}, \bar{y})$, with $l(\bar{x}) = l(\bar{y})$, and $(\bar{b}^l)_{l<\omega}$ such that

\[
\mathbb{M} \models \varphi(\bar{b}^l, \bar{b}^m) \quad \forall \ l < m < \omega;
\]

\[
\mathbb{M} \models \neg \exists \bar{x}^1 \ldots \exists \bar{x}^k (\varphi(\bar{x}^1, \bar{x}^2) \land \ldots \land \varphi(\bar{x}^{k-1}, \bar{x}^k) \land \varphi(\bar{x}^k, \bar{x}^1)).
\]

Fact: \ldots \Rightarrow SOP_{k+1} \Rightarrow SOP_k \Rightarrow \ldots \Rightarrow SOP_3 \Rightarrow tree\ property.

Theorem

*For all $n \geq 3$, T_n has SOP$_3$.***
The K_n-free Random Graph is Not Simple (second proof)

Proof (T_n has SOP$_3$).

Assume $n \neq 4$.
Let $m = \lceil \frac{n}{3} \rceil$. Then $2m < n$.

Let $\varphi(\bar{x}^1, \bar{x}^2, \bar{x}^3, \bar{y}^1, \bar{y}^2, \bar{y}^3)$ describe this configuration.

We can construct an infinite chain in $\mathbb{M} \models T_n$.

No 3-cycle is possible.
The K_n-free Random Graph is Not Simple (second proof)

Definition

Let $k \geq 3$. A theory T has the k-**strong order property**, SOP$_k$, if there is a formula $\varphi(\vec{x}, \vec{y})$ and $(\vec{b}^l)_{l<\omega}$ such that

\[
\mathcal{M} \models \varphi(\vec{b}^l, \vec{b}^m) \quad \forall l < m < \omega;
\]

\[
\mathcal{M} \models \neg \exists \vec{x}^1 \ldots \exists \vec{x}^k (\varphi(\vec{x}^1, \vec{x}^2) \land \ldots \land \varphi(\vec{x}^{k-1}, \vec{x}^k) \land \varphi(\vec{x}^k, \vec{x}^1)).
\]

Fact: $\ldots \Rightarrow$ SOP$_{k+1} \Rightarrow$ SOP$_k \Rightarrow \ldots \Rightarrow$ SOP$_3 \Rightarrow$ tree property.

Theorem

*For all $n \geq 3$, T_n has SOP$_3$.***

Fact: For all $n \geq 3$, T_n does not have SOP$_4$.

Recall: Dividing in the Random Graph

Theorem

Let \(A \subset M \models T_0 \), \(\varphi(\bar{x}, \bar{y}) \in \mathcal{L}_A^0 \), and \(\bar{b} \in M \) such that \(\varphi(\bar{x}, \bar{b}) \) is consistent. Then \(\varphi(\bar{x}, b) \) divides over \(A \) if and only if \(\varphi(\bar{x}, \bar{b}) \models x_j = b \) for some \(b \in \bar{b} \setminus A \).
Dividing in T_n

Definition

Suppose $A, B \subset M$ are disjoint. Then B is n-bound to A if there is $B_0 \subseteq A \cup B$, $|B_0| = n$, $B_0 \cap A \neq \emptyset \neq B_0 \cap B$, such that

1. $(B_0 \cap A) R (B_0 \cap B)$,
2. $(B_0 \cap A) \cong K_m$, where $m = |B_0 \cap A|$.

Informally, B is n-bound to A if there is a subgraph $B_0 \subseteq AB$ of size n, such that the only thing preventing B_0 from being isomorphic to K_n is a possible lack of edges between points in B.

- \bar{b} is 4-bound to A
- \bar{b} is not 4-bound to A (but A is 4-bound to \bar{b})
Dividing in T_n

Theorem

Let $A \subset \mathbb{M}$, $\varphi(\bar{x}, \bar{y}) \in \mathcal{L}_A^R$, and $\bar{b} \in \mathbb{M} \setminus A$ such that $\varphi(\bar{x}, \bar{b})$ is consistent. Then $\varphi(\bar{x}, \bar{b})$ divides over A if and only if

1. \bar{b} is not n-bound to A,
2. \bar{b} is n-bound to $A\bar{c}$ for any $\bar{c} \models \varphi(\bar{x}, \bar{b})$.

Proof.

(\Leftarrow): \bar{b} not n-bound to A allows construction of a sequence $(\bar{b}^l)_{l<\omega}$, with enough edges, so that being n-bound to $A\bar{c}$ will force $(n−1)$-inconsistency in $\{\varphi(\bar{x}, \bar{b}^l) : l < \omega\}$.

(\Rightarrow): Let $(\bar{b}^l)_{l<\omega}$, indiscernible over A, witness dividing. Since $\varphi(\bar{x}, \bar{b})$ does not divide over A in T_0, there must be a copy of K_n in $A\bar{c}(\bar{b}^l)_{l<\omega}$, where \bar{c} is an “optimal” solution of $\{\varphi(\bar{x}, \bar{b}^l) : l < \omega\}$ in T_0. By indiscernibility, this K_n will “project” to the required conditions in $A\bar{b}$. □
Dividing in T_n - Examples

Corollary

Suppose $A \subset \mathbb{M}$ and $b_1, \ldots, b_{n-1} \in \mathbb{M} \setminus A$ are distinct. Then the formula

$$\varphi(x, \bar{b}) := \bigwedge_{i=1}^{n-1} xRb_i$$

divides over A if and only if \bar{b} is not n-bound to A.

Corollary

Let $A \subset \mathbb{M}$ and $\varphi(\bar{x}, \bar{y}) \in \mathcal{L}^R_A$. Suppose $\bar{b} \in \mathbb{M} \setminus A$ such that $\varphi(\bar{x}, \bar{b})$ is consistent and divides over A. Define

$$R^\varphi = \{ u \in A\bar{b} : \exists i \varphi(\bar{x}, \bar{b}) \triangleright x_iRu \} \cup \{ x_i : \exists u \in A\bar{b}, \varphi(\bar{x}, \bar{b}) \triangleright x_iRu \}.$$

Then $|R^\varphi| \geq n$ and $|\bar{b} \cap R^\varphi| > 1$.
Recall: \downarrow in T_0

Theorem

Let $A, B, \bar{c} \subset \mathcal{M} \models T_0$. Then

$$\bar{c} \downarrow^A_B \iff \bar{c} \downarrow^d_A B \iff \bar{c} \cap B \subseteq A.$$
Lemma

Let $A \subseteq \mathbb{M} \models T_n$ and $p \in S_m(A)$. If $p \vdash x = b$ for some $b \in \mathbb{M}$ then $b \in A$. If $p \vdash xRb$ for some $b \in \mathbb{M}$, then either $b \in A$ or $p \vdash x = a$ for some $a \in A$.

Theorem

Let $A, B, \bar{c} \subseteq \mathbb{M} \models T_n$. Then

$$\bar{c} \downarrow_A B \iff \bar{c} \downarrow^d_A B \iff \bar{c} \cap B \subseteq A \text{ and for all } \bar{b} \in B \setminus A, \bar{b} \text{ is either } n\text{-bound to } A \text{ or not } n\text{-bound to } A\bar{c}.$$

Corollary

Let $A \subseteq \mathbb{M} \models T_n$. If $\pi(\bar{x})$ is a partial type over A, then $\pi(\bar{x})$ does not fork over A.

Lemma

Suppose \((\bar{b}^l)_{l<\omega}\) is an indiscernible sequence in \(M \models T_n\) such that \(l(\bar{b}^0) = 4\) and \(\bar{b}^0\) is \(K_2\)-free. Then either there are \(i < j\) such that \(\{b^i_l, b^j_l : l < \omega\}\) is \(K_2\)-free, or \(\bigcup_{l<\omega} \bar{b}^l\) is not \(K_3\)-free.
Forking in T_n

Theorem

Let $\mathbb{M} \models T_n$ and $A\overline{b} \subset \mathbb{M}$ such that $l(\overline{b}) = 4$, $\overline{b}RA$, $A \cong K_{n-3}$, and \overline{b} is K_2-free. For $i \neq j$, let

$$\varphi_{i,j}(x, b_i, b_j) = xRb_i \land xRb_j \land \bigwedge_{a \in A} xRa,$$

and set

$$\varphi(x, \overline{b}) := \bigvee_{i \neq j} \varphi_{i,j}(x, b_i, b_j).$$

Then $\varphi(x, \overline{b})$ forks over A but does not divide over A.

$$\varphi(x, \overline{b}) = "xRA \land |\{b_i : xRb_i\}| = 2"$$
Higher Arity Graphs

Now suppose R is a relation of arity $r \geq 2$. An r-graph is an \mathcal{L}-structure satisfying the following sentence

$$\forall x_1 \ldots \forall x_r \left(R(x_1, \ldots, x_r) \rightarrow \left(\bigwedge_{i \neq j} x_i \neq x_j \land \bigwedge_{\sigma \in S_r} R(x_{\sigma(1)}, \ldots, x_{\sigma(r)}) \right) \right).$$

So R can be thought of as a collection of r-element subsets of the r-graph.

Let T^r_0 and T^r_n, for $n > r$, be the natural analogs of T_0 and T_n, respectively, to r-graphs.

Call T^r_0 the **theory of the random r-graph**, and T^r_n the **theory of the random K^r_n-free r-graph**, where K^r_n is the complete r-graph of size n.

T^r_n can be thought of as the theory of the unique (countable) Fraïssé limit of the class of finite K^r_n-free r-graphs.
Recall - Dividing in \(T_0 \)

Lemma

Let \(A \subset M \models T_0, \bar{b}, \bar{c} \in M \) such that \(\bar{c} \downarrow \bigcap_A \bar{b} \). If \((\bar{b}^l)_{l<\omega}\) is \(A \)-indiscernible, with \(\bar{b}^0 = \bar{b} \), then there is \(\bar{d} \in M \) with \(\bar{d} \downarrow \bigcap_A \bigcup_{l<\omega} \bar{b}^l \) such that \(\bar{d} \bar{b}^l \equiv_A \bar{c} \bar{b} \) for all \(l < \omega \).

Lemma

Let \(A \subset M \models T_0 \) and \(p(\bar{x}, \bar{y}) \in S(A) \) such that \(x_i \neq y_j \in p(\bar{x}, \bar{y}) \) for all \(i, j \). Suppose \(p(\bar{x}, \bar{b}) \) is consistent and \((\bar{b}^l)_{l<\omega}\) is indiscernible over \(A \) with \(\bar{b}^0 = \bar{b} \). Then there is a solution \(\bar{c} \) of \(\bigcup_{l<\omega} p(\bar{x}, \bar{b}^l) \).
Dividing in T'_0

Lemma

Let $A \subseteq M \models T'_0$ and $p(\bar{x}, \bar{y}) \in S(A)$ such that $x_i \neq y_j \in p(\bar{x}, \bar{y})$ for all i, j. Suppose $p(\bar{x}, \bar{b})$ is consistent and $(\bar{b}'_l)_{l<\omega}$ is indiscernible over A with $b^0 = \bar{b}$. Then there is a solution \bar{c} of $\bigcup_{l<\omega} p(\bar{x}, \bar{b}'_l)$.

In fact, we can take \bar{c} to be an optimal solution, in particular if $A_0 \subseteq A(\bar{b}'_l)_{l<\omega}$, then for any i_1, \ldots, i_k

$$M \models R(c_{i_1}, \ldots, c_{i_k}, A_0) \iff R(x_{i_1}, \ldots, x_{i_k}, A_0) \in \bigcup_{l<\omega} p(\bar{x}, \bar{b}'_l).$$

Corollary (T'_0 is simple.)

Suppose $B \subseteq M \models T'_0$ and $p \in S(B)$. Then p does not fork over $A = \{b \in B : \exists i \ x_i = b \in p(\bar{x})\}$.

Gabriel Conant (UIC)
Lemma

Assume $r > 2$. Let $A \subseteq \mathcal{M} \models T'_n$ and $p(\bar{x}, \bar{y}) \in S(A)$ such that $x_i \neq y_j \in p(\bar{x}, \bar{y})$ for all i, j. Suppose $p(\bar{x}, \bar{b})$ is consistent and $(\bar{b}^l)_{l < \omega}$ is indiscernible over A with $\bar{b}^0 = \bar{b}$. Then there is a solution \bar{c} of $\bigcup_{l < \omega} p(\bar{x}, \bar{b}^l)$.

Corollary (T'_n is simple if $r > 2.$)

Suppose $r > 2$ and $B \subseteq \mathcal{M} \models T'_n$ and $p \in S(B)$. Then p does not fork over $A = \{b \in B : \exists i \ x_i = b \in p(\bar{x})\}$.

Proof of Lemma.

Let $K_r \sim = W \subseteq A(\bar{b}_l)$ where $|\{l: W \cap \bar{b}_l \neq \emptyset\}| > 1$.

If $|\{l: W \cap \bar{b}_m \neq \emptyset\}| \leq 1$,

This contradicts $M| = \exists \bar{x}p(\bar{b}_m)$.
Proof of Lemma.

\[\bar{c} \in \mathbb{M}' \models T_0' \text{ is an optimal solution to } \bigcup_{l<\omega} p(\bar{x}, \bar{b}'). \]
Proof of Lemma.

\[\bar{c} \in M' \models T_0^r \text{ is an optimal solution to } \bigcup_{l < \omega} p(\bar{x}, \bar{b}^l). \]

Show \(A\bar{c}(\bar{b}^l)_{l < \omega} \) is \(K_n^r \)-free.
Dividing in T^r_n, $r > 2$

Proof of Lemma.

$\bar{c} \in \mathbb{M}' \models T^r_0$ is an optimal solution to $\bigcup_{l<\omega} p(\bar{x}, \bar{b}^l)$.

Show $A\bar{c}(\bar{b}^l)_{l<\omega}$ is K^r_n-free.

Let $K^r_n \cong W \subseteq A\bar{c}(\bar{b}^l)_{l<\omega}$.
Dividing in T_r^n, $r > 2$

Proof of Lemma.

$\bar{c} \in M' \models T_0^r$ is an optimal solution to $\bigcup_{l<\omega} p(\bar{x}, \bar{b}^l)$.

Show $A\bar{c}(\bar{b}^l)_{l<\omega}$ is K_n^r-free.

Let $K_n^r \cong W \subseteq A\bar{c}(\bar{b}^l)_{l<\omega}$.

There is $c_i \in W \cap \bar{c}$.
Proof of Lemma.

\[\bar{c} \in \mathbb{M'} \models T_0^r \text{ is an optimal solution to } \bigcup_{l<\omega} p(\bar{x}, \bar{b}^l). \]

Show \(A\bar{c}(\bar{b}^l)_{l<\omega} \) is \(K_n^r \)-free.

Let \(K_n^r \cong W \subseteq A\bar{c}(\bar{b}^l)_{l<\omega} \).

There is \(c_i \in W \cap \bar{c} \).

If \(|l : W \cap \bar{b}^l \neq \emptyset| > 1 \)
Dividing in T_n^r, $r > 2$

Proof of Lemma.

$\bar{c} \in \mathbb{M}' \models T_0^r$ is an optimal solution to $\bigcup_{l<\omega} p(\bar{x}, \bar{b}^l)$.

Show $A\bar{c}(\bar{b}^l)_{l<\omega}$ is K_n^r-free.

Let $K_n^r \cong W \subseteq A\bar{c}(\bar{b}^l)_{l<\omega}$.

There is $c_i \in W \cap \bar{c}$.

If $|l : W \cap \bar{b}^l \neq \emptyset| > 1$ pick $W_0 \subseteq W \setminus \{c_i, u, v\}$, with $|W_0| = r - 3$.

Proof of Lemma.

\[\overline{c} \in \mathbb{M}' \models T_0' \text{ is an optimal solution to } \bigcup_{l < \omega} \rho(\overline{x}, \overline{b}^l). \]

Show \(A\overline{c}(\overline{b}^l)_{l < \omega} \) is \(K_n^r \)-free.

Let \(K_n^r \cong W \subseteq A\overline{c}(\overline{b}^l)_{l < \omega} \).

There is \(c_i \in W \cap \overline{c} \).

If \(|l : W \cap \overline{b}^l \neq \emptyset| > 1 \)

pick \(W_0 \subseteq W \setminus \{c_i, u, v\} \),

with \(|W_0| = r - 3 \).

\[R(c_i, u, v, W_0) \in \bigcup_{l < \omega} \rho(\overline{x}, \overline{b}^l). \]
Proof of Lemma.

\[\bar{c} \in M' \models T_0' \text{ is an optimal solution to } \bigcup_{l<\omega} p(\bar{x}, \bar{b}^l). \]

Show \(A\bar{c}(\bar{b}^l)_{l<\omega} \) is \(K_n^r \)-free.

Let \(K_n^r \cong W \subseteq A\bar{c}(\bar{b}^l)_{l<\omega} \).

\[|\{l : W \cap \bar{b}^l \neq \emptyset\}| \leq 1 \]
Proof of Lemma.

\[\bar{c} \in \mathbb{M}' \models T_0^r \text{ is an optimal solution to } \bigcup_{l < \omega} p(\bar{x}, \bar{b}^l). \]

Show \(A\bar{c}(\bar{b}^l)_{l < \omega} \) is \(K_n^r \)-free.

Let \(K_n^r \cong W \subseteq A\bar{c}(\bar{b}^l)_{l < \omega} \).

\[|\{l : W \cap \bar{b}^l \neq \emptyset\}| \leq 1 \]

“\(W \cong K_n^r \)” \(\in p(\bar{c}, \bar{b}^m) \)
Proof of Lemma.

\(\bar{c} \in \mathbb{M} \models T_0^r \) is an optimal solution to \(\bigcup_{l<\omega} p(\bar{x}, \bar{b}^l) \).

Show \(A\bar{c}(\bar{b}^l)_{l<\omega} \) is \(K_n^r \)-free.

Let \(K_n^r \cong W \subseteq A\bar{c}(\bar{b}^l)_{l<\omega} \).

\(|\{l : W \cap \bar{b}^l \neq \emptyset\}| \leq 1 \)

"\(W \cong K_n^r \)" \(\in p(\bar{c}, \bar{b}^m) \)

This contradicts \(\mathbb{M} \models \exists \bar{x} p(\bar{x}, \bar{b}^m) \).
References

