Chp 3 Lee

min
$$c'x$$

 $\begin{array}{rcl} Ax & = & b \; ; \\ x & \geq & \mathbf{0} \; . \end{array}$

Basic partition

A basic partition of $A \in \mathbb{R}^{m \times n}$ is a partition of $\{1, 2, ..., n\}$ into a pair of ordered sets $\beta = (\beta_1, \beta_2, ..., \beta_m)$ and $\eta = (\eta_1, \eta_2, ..., \eta_{n-m})$ so that $A_\beta := [A_{\beta_1}, A_{\beta_2}, ..., A_{\beta_m}]$ is an invertible $m \times m$ matrix.

$$A := \begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 1 & 0 & 0 \\ 3/2 & 3/2 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$b := (7, 9, 6, 33/10)',$$

We associate a basic solution $\bar{x} \in \mathbb{R}^n$ with the basic partition via:

$$ar{x}_{\eta} := \mathbf{0} \in \mathbb{R}^{n-m};$$
 $ar{x}_{eta} := A_{eta}^{-1}b \in \mathbb{R}^{m}.$

Note that every basic solution \bar{x} satisfies $A\bar{x}=b$, because

$$A\bar{x} = \sum_{j=1}^{n} A_{j}\bar{x}_{j} = \sum_{j\in\beta} A_{j}\bar{x}_{j} + \sum_{j\in\eta} A_{j}\bar{x}_{j} = A_{\beta}\bar{x}_{\beta} + A_{\eta}\bar{x}_{\eta} = A_{\beta}\left(A_{\beta}^{-1}b\right) + A_{\eta}\mathbf{0} = b.$$

A basic solution \bar{x} is a basic feasible solution if it is feasible for (P). That is, if $\bar{x}_{\beta} = A_{\beta}^{-1}b \geq 0$.

we observe that the feasible region of (P) is the solution set, in \mathbb{R}^n ,

$$x_{eta} + A_{eta}^{-1}A_{\eta}x_{\eta} = A_{eta}^{-1}b;$$

 $x_{eta} \geq \mathbf{0}$, $x_{\eta} \geq \mathbf{0}$.

$$\begin{pmatrix} A_{\beta}^{-1}A_{\eta} \end{pmatrix} x_{\eta} \leq A_{\beta}^{-1}b ;
x_{\eta} \geq \mathbf{0} .$$

Notice how we can view the x_{β} variables as slack variables.

$$A := \begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 1 & 0 & 0 \\ 3/2 & 3/2 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$b := (7, 9, 6, 33/10)',$$

$$\beta := (\beta_1, \beta_2, \beta_3, \beta_4) = (1, 2, 4, 6),$$

$$\eta := (\eta_1, \eta_2) = (3, 5).$$

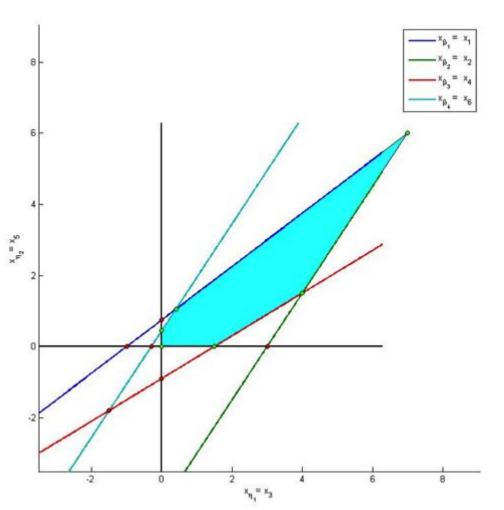
$$\begin{array}{lll} A_{\beta} & = & [A_{\beta_1},A_{\beta_2},A_{\beta_3},A_{\beta_4}] = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 1 & 1 & 0 \\ 3/2 & 3/2 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}, \\ A_{\eta} & = & [A_{\eta_1},A_{\eta_2}] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \end{array}$$

 $= (x_1, x_2, x_4, x_6)'$

 $x_{\eta} := (x_3, x_5)'$.

$$A_{eta}^{-1}A_{\eta} = egin{pmatrix} -1 & 4/3 \ 1 & -2/3 \ 2 & -10/3 \ -1 & 2/3 \end{pmatrix} , \ A_{eta}^{-1}b & := & (1,3,3,3/10)' , \end{cases}$$

 $A_{\beta}^{-1}b := (1,3,3,3/10)',$



A set $S \subset \mathbb{R}^n$ is a **convex set** if it contains the entire line segment between every pair of points in S . That is,

$$\lambda x^1 + (1 - \lambda)x^2 \in S$$
, whenever $x^1, x^2 \in S$ and $0 < \lambda < 1$.

For a convex set $S\subset\mathbb{R}^n$, a point $\hat{x}\in S$ is an **extreme point** of S if it is not on the interior of any line segment wholly contained in S. That is, if we *cannot* write

$$\hat{x} = \lambda x^1 + (1 - \lambda)x^2$$
, with $x^1 \neq x^2 \in S$ and $0 < \lambda < 1$.

Theorem 3.2

Every basic feasible solution of standard-form (P) is an extreme point of its feasible region.

$$ar{x}_{eta} := \mathbf{0} \in \mathbb{R}^{n-m}$$
 $\bar{x}_{eta} := A_{eta}^{-1} b \in \mathbb{R}^m$.

Theorem 3.3

Every extreme point of the feasible region of standard-form (P) is a basic solution.

Corollary 3.4

For a feasible point \hat{x} of standard-form (P), \hat{x} is extreme if and only if \hat{x} is a basic solution.

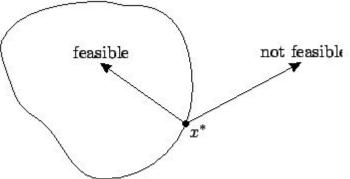


Figure: Feasible directions

For a point \hat{x} in a convex set $S \subset \mathbb{R}^n$, a feasible direction relative to the feasible solution \hat{x} is a $\hat{z} \in \mathbb{R}^n$ such that $\hat{x} + \epsilon \hat{z} \in S$, for sufficiently small positive $\epsilon \in \mathbb{R}$.

$$b = A(\hat{x} + \epsilon \hat{z}) = A\hat{x} + \epsilon A\hat{z} = b + \epsilon A\hat{z},$$

so we need $A\hat{z} = 0$. That is, \hat{z} must be in the null space of A.

Focusing on the standard-form problem (P), we associate a basic direction $\bar{z} \in \mathbb{R}^n$ with the basic partition β , η and a choice of nonbasic index η_i via

$$ar{z}_{\eta} := e_{j} \in \mathbb{R}^{n-m};$$
 $ar{z}_{\beta} := -A_{\beta}^{-1}A_{\eta_{j}} \in \mathbb{R}^{m}.$

Note that every basic direction \bar{z} is in the null space of A:

$$Aar{z}=A_etaar{z}_eta+A_\etaar{z}_\eta=A_eta\left(-A_eta^{-1}A_{\eta_j}
ight)+A_\etaoldsymbol{e}_j=-A_{\eta_j}+A_{\eta_j}=oldsymbol{0}\;.$$

$$A\left(\hat{x}+\epsilon\bar{z}\right)=b\,,$$

Let $\bar{b} := \bar{x}_{\beta} = A_{\beta}^{-1}b$

Theorem 3.5

For a standard-form problem (P), suppose that \bar{x} is a basic feasible solution relative to the basic partition β , η . Consider choosing a nonbasic index η_j . Then the associated basic direction \bar{z} is a feasible direction relative to \bar{x} if and only if

$$\bar{b}_i > 0$$
, for all i such that $\bar{a}_{i,\eta_i} > 0$.

For a nonempty convex set $S \subset \mathbb{R}^n$, a ray of S is a $\hat{z} \neq \mathbf{0}$ in \mathbb{R}^n such that $\hat{x} + \tau \hat{z} \in S$ for all $\hat{x} \in S$ and all positive $\tau \in \mathbb{R}$.

If the basic direction \bar{z} is a ray, then we call it a **basic feasible ray**. We have already seen that $A\bar{z} = 0$. Furthermore, $\bar{z} \geq 0$ if and only if $\bar{A}_{\eta_i} := A_\beta^{-1} A_{\eta_i} \leq 0$.

Theorem 3.6

The basic direction \bar{z} is a ray of the feasible region of (P) if and only if $\bar{A}_{\eta_i} \leq \mathbf{0}$.

A ray \hat{z} of a convex set S is an extreme ray if we cannot write

$$\hat{z} = z^1 + z^2$$
, with $z^1 \neq \mu z^2$ being rays of S and $\mu \neq 0$.

Every basic feasible ray of standard-form (P) is an extreme ray of its feasible region.

Theorem 3.8

Every extreme ray of the feasible region of standard-form (P) is a positive multiple of a basic feasible ray.