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Abstract

There have been significant advances in the theory of goal programming (GP) in recent years, particularly in the area
of intelligent modelling and solution analysis. The intention of this paper is to provide an overview of these devel-
opments, to detail and assess the current state-of-the-art in the subject, and to highlight areas which seem promising for
future research. Modelling techniques such as detection and restoration of pareto efficiency, normalisation, redundancy
checking, and non-standard utility function modelling are overviewed. The connection between GP and other multi-
objective-programming techniques as well as a utility interpretation of GP are examined. The rationality of ranking
Multi-Criteria Decision Making techniques, and of placing GP in such a ranking, is discussed. © 1998 Elsevier Science

B.V. All rights reserved.
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1. Introduction

Goal Programming (GP) is a multi-objective
programming technique. The ethos of GP lies in
the Simonan [50] concept of satisfying of objec-
tives. Simon conjectures that in today’s complex
organisations the decision makers (DMs) do not
try to maximise a well defined utility function. In
fact the conflicts of interest and the incompleteness
of available information make it almost impossible
to build a reliable mathematical representation of
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the DMs’ preferences. On the contrary, within this
kind of decision environment the DMs try and
achieve a set of goals (or targets) as closely as
possible. Although GP was not originally con-
ceived within a satisfying philosophy it still pro-
vides a good framework in which to implement
this kind of philosophy.

The roots of GP lie in a paper by Charnes et al.
in 1955 [6] in which they deal with executive
compensation methods. A more explicit definition
is given by Charnes and Cooper [7] in 1961 in
which the term GP is first used. Until the middle of
the 1970s, GP applications reported in the litera-
ture were rather scarce. Since that time, and chiefly
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due to seminal works by Lee [30] and Ignizio [22],
an impressive boom of GP applications and tech-
nical improvements have arisen. It can be said that
GP has been, and still is, the most widely used
multi-criteria decision making technique [44]. Al-
though Schniederjans [48] has detected a decline in
the life cycle of GP with regard to theoretical de-
velopments, the number of cases along with the
range of fields to which GP has been, and is still is,
applied is impressive, as shown by recent surveys
by Romero [44,45], Schniederjans [47], and Tamiz
et al. [54].

GP models can be classified into two major
subsets. In the first type the unwanted deviations
are assigned weights according to their relative
importance to the DM and minimised as an
Archimedian sum. This is known as weighted
GP(WGP). The algebraic formulation of a WGP is
given as:

k

min z= Z(uini + Uip,')
i=1

st. filxX)+m—p=b;, i=1...0,

where f;(x) is a linear function (objective) of x, and
b; the target value for that objective. n; and p;
represent the negative and positive deviations from
this target value. u; and v; are the respective posi-
tive weights attached to these deviations in the
achievement function z. These weights take the
value zero if the minimisation of the corresponding
deviational variable is unimportant to the DM. C
is an optional set of hard constraints as found in
linear programming (LP).

In the other major subset of GP the deviational
variables are assigned into a number of priority
levels and minimised in a lexicographic sense. A
lexicographic minimisation being defined as a se-
quential minimisation of each priority whilst
maintaining the minimal values reached by all
higher priority level minimisations. This is known as
lexicographic GP(LGP), as introduced and chiefly
developed by Ijiri [23], Lee [30], and Ignizio [22].

The algebraic representation of an LGP is given
as:

x € Cs,

Lex min a = (gi(n,p),g2(n,p),...... ,g.(n,p))
s.t. f;'(X)—‘y—l’l,‘—pl‘:bi7 lzl,,Q

This model has L priority levels, and Q objec-
tives. a is an ordered vector of these L priority
levels. n; and p; are deviational variables which
represent the under and over achievement of the
ith goal, respectively. x is the set of decision vari-
ables to be determined. Any ‘LP’ style hard con-
straints are placed, by convention, in the first
priority level. A standard ‘g’ (within priority level)
function is given by

gi(n,p) = upny + - +wung +v,pr+ -+ vi,Po,

where u and v represent inter-priority level weights,
as in weighted GP, a zero weight is given to any
deviational variable whose minimisation is unim-
portant.

Although LGP and WGP are the most widely
used GP variants (Tamiz et al. [54] show that
around 64% of GP applications reported in the
literature use LGP and 21% WGP) there are other
GP variants. Among these are MINMAX GP, in-
troduced by Flavell in 1976 [14], where the maxi-
mum deviation is minimised, and its close relative
Fuzzy GP introduced by Zimmermann [8] in 1978.

This overview of the current state-of-the-art in
GP attempts to stimulate OR practitioners in the
right use of this satisfying approach by means of
increasing the clarity of the philosophy underlying
the GP formulation. It is important to note that
this paper is concerned with GP as a tool for de-
cision making. Consequently, important uses of
GP in other areas such as regression analysis or
discriminant analysis are not considered here.
Similarly, closely related fields, such as data en-
velopment analysis are not included either. The
reason for these omissions is the amount and scope
of the application of GP means all these subjects
could not receive the review space they deserve in a
single paper.

The remainder of this paper is divided into six
sections. Section 2 gives an overview of the current
state-of-the-art regarding GP modelling, detailing
approaches to issues such as pareto efficiency,
normalisation, and redundancy checking. Sec-
tion 3 discusses connections between GP and other
multi-objective programming techniques such as
compromise programming (CP) and the reference
point method (RPM). Section 4 gives links be-
tween GP and utility function theory. Section 5
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discusses the feasibility of ranking MCDM meth-
ods. Section 6 reviews other recent developments
in the field of GP. Finally, Section 7 summarises
and points towards directions for future research.

2. An overview of current modelling techniques

An area now recognised as being of equal im-
portance as the actual solving of a goal pro-
gramme is that of accurate modelling and solution
analysis. There are various modelling pitfalls that
should be avoided, particularly by those unfamil-
iar in working in a multi-objective environment, or
those forming goal programmes by the conversion
of previously single objective LP models. This
section endeavours to highlight the pitfalls, and
gives current methods for the avoidance and res-
olution of any resulting errors.

2.1. Pareto efficiency considerations

One major criticism of GP in the past has
concerned the area of pareto efficiency. In any
multiple objective problem, a solution is said to be
pareto inefficient (or dominated) if the achieved
level of any one objective can be improved without
worsening the achieved level of any other objective
[44]. The standard GP formulation can produce
inefficient solutions if the target values are set too
pessimistically. This fact led some authors to argue
against the use of GP [28] and led to various GP
variants and extensions, such as the method of
Hannan [20] and the RPM discussed in Section 3
[62]. The problem of restoring pareto efficiency to
an inefficient GP has now been solved. The basis
for all restoration techniques lies in the pioneering
work by Hannan [20]. This section gives the state-
of-the-art regarding accurate pareto inefficiency
detection, isolation, and restoration techniques.

2.1.1. Pareto state of an objective
A recent work by Tamiz and Jones [57] sub-
divides each objective in a GP model into one of
three pareto states.
e Efficient: Achieved value of the objective cannot
be improved without worsening the level of an-
other objective.

o [nefficient: Achieved value of the objective can
be improved without worsening the level of an-
other objective.

o Unbounded: Achieved value of the objective can
be infinitely improved without worsening the
level of another objective.

From the definitions it can be seen that the ef-
ficient and inefficient subsets exclusively and ex-
haustively form the objective set, and the
unbounded objectives are a further subset of the
inefficient subset. If any objective is inefficient,
then the entire model is inefficient. Likewise if any
objective is unbounded, then the entire model is
unbounded, a likely indication of modelling error.

This classification scheme provides a logical
means of isolating pareto inefficiency and un-
boundedness in a model. A series of tests are given
by Tamiz and Jones [57] which classify the objec-
tives into their pareto states in a computationally
efficient manner. This method requires only de-
generate simplex iterations, and thus allows detec-
tion whilst remaining at the original solution point,
from where restoration can begin if necessary.

2.1.2. Restoration of pareto efficiency

Given that one or more objectives are found to
be pareto efficient, the remaining task is to project
the inefficient solution onto the efficient boundary
in a manner satisfactory to the DM. Before any
restoration-type movement can take place, each
objective must be safeguarded against degrada-
tion. This can be easily achieved by the placing of
upper or lower bounds on the deviational vari-
ables:

NWV; > NWVi, WV, <WV;,

where NWV; and WV, are the non-weighted and
weighted deviational variables for the jth objective
respectively, which take the values of NWV; and
WV at the inefficient solution point.

With these bounds in place, any improvement
in any objective will be an acceptable Pareto move
towards the efficient frontier. There may be many
solutions on the efficient frontier that are possible
results of the restoration process. A good resto-
ration method selects the point amongst this
solution set that is optimal with respect to the
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DMs preferences. There are several possible

restoration methods, and these are outlined below.

o Straight restoration [20,36,44]: in this method
an unweighted sum of the unweighted deviatio-
nal variables corresponding to the inefficient ob-
jectives is maximised. This is achieved by the
addition of an extra priority level to the achieve-
ment function of an LGP, or the conversion of a
WGP into an LGP with two priority levels. For
example, the achievement function

min a = [(n1), (2n2 + 5p3)]

becomes (assuming all three objectives are in-
efficient),

min a = [(n1), (2n2 + 5p3), (— p1 — p2 — m3)].

This method will ensure a pareto efficient so-
lution is reached providing the model is not
pareto unbounded. However, the individual
weights on the deviational variables are not
taken into account.

e Preference based restoration [57]: in this meth-
od a sum of the unwanted deviational variables
is again penalised. In this case however, the
weights and/or priority levels used for the
weighted deviational variables are transferred
to the unweighted variables. For example, the
achievement function

min a = [(n1), (2n2 + 5p3)],

now becomes (again assuming all objectives are
inefficient)

min a
= [(m1), (2m2 + 5p3), (= p1), (= 2p2 — 5n3)].

This method ensures continuity of preference
both below and above the target values, thus
ensuring a pareto efficient point is found in
accordance with the DM’s original preferences.
o [nteractive restoration [57]: in this method the
set of inefficient objectives are presented to the
DM who then chooses the one they would most
like to see improved. This process continues iter-
atively until an efficient solution is produced.
The interactive method allows for the fact that
the DM’s preferences below and above the tar-

get may not be continuous. This is a frequent
occurrence in GP models, where some goal lev-
els represent standards to be met (legal require-
ments, environmental standards, etc.) whilst
others represent DM desires (low cost, high
profit, etc.). This method has the advantage of
involving the DM in the restoration process,
and is thus subject to the discussions regarding
multi-objective interactive methods [60]. Fortu-
nately, the number of interactive iterations re-
quired to restore efficiency is usually low [57].

2.2. Normalisation techniques

A major issue of debate within the GP com-
munity has concerned the use of normalisation
techniques to overcome incommensurability. In-
commensurability in a WGP, or within a priority
level of an LGP, occurs when deviational variables
measured in different units are summed up di-
rectly. This simple summation will cause an unin-
tentional bias towards the objectives with a larger
magnitude. This bias may lead to erroneous or
misleading results.

One suggestion to overcome this difficulty is to
divide each objective through by a constant per-
taining to that objective. This ensures that all ob-
jectives have roughly the same magnitude. Such a
constant is known as a normalisation constant. This
leads to the revised algebraic format for a WGP:

Y
. uin; + vip;
— § 2 A 1
min z 2 ( 2 > (1)
s.t. f,(x)+n,—p1:b,, = lQ, (2)
x € G,

where k; is the normalisation constant for the ith
objective.

There are several different normalisation
methods, each with its own normalisation con-
stant. The attributes of each are given below.

e Percentage normalisation [44]: Here the nor-
malisation constant is the target value divided
by hundred: N; = b;/100. This ensures that all
deviations are measured on a percentage scale.
This method restores meaning to the optimal
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achievement function value, which now mea-
sures the total percentage sum of deviations
from goals. It does however, require accurate
setting of the target values and is not applicable
to models in which any objective has a target
value of zero.

Euclidean normalisation [12,58]: The normali-
sation constant in this method is the Euclidean
norm of the technical coefficients in the objec-
tive: N; = ; a%j. This method is computa-
tionally robust and has the advantage of
reconciling the L, distance of deviation with
the L; GP formulation. It does not however re-
store significant meaning to the final achieve-
ment function value.

Summation normalisation [24]: Here the nor-
malisation constant is the absolute value of the
technical coefficients in the objective:
N; =3_; | aij |. This method has a larger divisor
than the Euclidean method and is found to be
better when scaling problems that are badly in-
commensurable. It has the same robustness as
the Euclidean method, but also does not restore
meaning to the achievement function value.
Zero—one normalisation [36 ]: The normalisation
constant in this method is equal to the distance
between the target value and the worst possible
value for the relevant deviational variable within
the feasible set defined by the hard constraints in
the model. Note that in this method the normali-
sation constant is associated with the penalised
deviational variable rather than the objective.
Thus, &7 = p™* and k! = n™*, where n™* and
p"™ are the worst possible values of n;, p; within
the feasible set. This scales all deviations onto a
scale between zero (target) and one (worst possi-
ble). An alternative is to set the value zero to equal
the minimal possible deviation within the feasible
set, giving k! = p®* — pMit and k7 = pmax — pmin,
This eliminates distortions due to unrealistically
set target values. The zero—one method restores
meaning to the final achievement function value,
being a measure of non-achievement of targets. It
is however, the least computationally stable of the
methods [24], requiring the existence of a closed
feasible set with regard to each objective and no
degenerate (zero ranged) objectives. The compu-
tational time needed is significantly greater than

the other methods due to the necessity to compute
the worst values of each deviational variable.

The idea of obtaining a measure of incom-
mensurability is discussed by Jones [24] who gives
hybrid algorithm which applies no normalisation,
Euclidean normalisation, or summation normali-
sation dependent on the level of incommensura-
bility found.

2.3. The selection of preferential weights

Weights within a GP context are introduced
with for the following double purpose:

1. To normalise the goals in the model.
2. To indicate the DM’s preferences with respect
to each goal.

The first purpose of normalisation is detailed in
the Section 2.2. Regarding the second purpose of
DM preferences, there are several methods for
specifying the corresponding weight values in GP,
as detailed by Ringuest [43]. Two promising meth-
ods for use within a GP context are detailed below.

Firstly, Gass [16] explains how a worthwhile
link can be established between the Analytical
Hierarchy Process (AHP) [46] and GP. In fact, the
weights derived from the pairwise comparison of
AHP can be incorporated directly into a WGP
model. Gass [17] also states that in some cases the
normalising weight is simply part of the whole
weight that is absorbed by the AHP weight de-
termination.

Secondly, the setting of preferential weights can
be approached through an interactive MCDM
method. An example of this kind of approach is
given by Lara and Romero [29] where preferential
weights are elicited and incorporated into a GP
model by resorting to the interactive MCDM
method of Zionts and Wallenius [4].

2.4. Naive prioritization and redundancy checking

All algorithms for the solution of LGP models
are characterised by the following idea:
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If the LP problem corresponding to the ith
priority level has no alternate solutions then
goals placed in priorities lower than the ith
one become redundant, i.e. they become ““or-
naments” for the LGP model

Amador and Romero [1] empirically show that
the redundancy of goals is not only a theoretical
possibility but a practical problem. In fact these
authors look for redundant goals in a number of
LGP applications reported in the literature. In all
but one of the applications, at least one of the
priority levels is redundant. Moreover, about 50%
of the cases have two or more redundant priority
levels. Finally, in terms of aggregated results, at
least a quarter of the goals are redundant. These
results clearly show the practical importance of the
topic of redundancy in LGP models.

Some possible causes of redundant goals include:
1. An excessive number of priority levels, especial-

ly in comparison to the number of goals.

2. The fixing of targets equal to or close to the ide-
al values.

3. The inclusion of many two-sided goals in the
achievement function (a two-sided goal is one
in which both deviational variables are penal-
ised).

Although Amador and Romero offer a simple
procedure for the identification of redundant
goals, the important area of redundancy analysis is
still open. In fact, resolution of redundancy is a
more difficult task than identification, requiring
both re-inspection of the model and re-setting of
target values. The development of a systematic
means of carrying out such a task so as to elimi-
nate redundancy provides an interesting area for
future research, with possible connections to the
field of interactive algorithms (as detailed in Sec-
tion 6) and intelligent GP systems [24]. It is inter-
esting to note that the intelligent GP system
(GPSYS) is able to automatically detect redundant
goals within an LGP model [24].

3. Connections between GP and other MCDM
techniques

Within the MCDM profession it is a common
practice to present different approaches in a

disconnected way, giving the impression that each
approach is completely autonomous. However,
this is not the case. In fact, as will be shown in this
section, there are important links between GP and
other MCDM distance function methods. Firstly it
is shown how the following general distance
function model can be viewed as a single root for
several MCDM approaches:

0 PP
i w’
min l; ; ] )

s.t. x € C,
where p is the metric, w; are Archimedian or non-
preemptive weights and k; are normalising con-
stants (e.g. the difference between ideal and nadir
values).

To obtain a WGP model from Eq. (3) it is only
necessary to make p = 1 and to introduce a simple
change of variables based on positive and negative
deviations, as shown by Charnes and Cooper [10].
The change of variables required is »n; =
(1/2)bi — fi(x)| + (b; — fi(x))] and p; = (1/2)[|b—
fix)| = (b; — fi(x))]. To generate the WGP model
it is only necessary to add »; and p; and to subtract
p; from n; [10]. If in the corresponding WGP model
b; is set equal to b}, where b} is an infeasibility high
target or anchor value, then a CP model for the
p = 1 metric is obtained, as detailed in [44].

If in Eq. (3) we now make p = oo, the maxi-
mum deviation is minimised, which leads to the
following algebraic model:

b; — fi(x)
ki

min D= max [ﬁ[bi— f;-(x)]} (4)

1<i<0| ki
st. xe . (5)
Since the above function is not smooth, its

minimisation is usually performed by solving the
equivalent problem [38]

min D
Wi .
x € Cs.

By setting b; = b} in Eq. (6), a CP model for the
metric p = oo is obtained. Moreover, when the
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targets are fixed at their anchor values, the positive
deviational variables become redundant because
over-achieving these targets is not possible. (This
statement is true in the case “more is better”, in
the opposite case (i.e. “less is better””) then the
negative deviational variables will take the value
zero and the reasoning is symmetric.) Hence for
the ith goal we have

n = b — fi(x)- (7)

By substituting Eq. (7) into Eq. (6) the follow-
ing MINMAX or Chebyshev GP formulation is
obtained:

min D
s.t. Wlini <D,
" (8)
fix)+ni—pi=b;, i=1...0,
x € Cs.

When b is less than its anchor value, models (4)
and (6) can generate non-efficient solutions. One
way to guarantee efficiency is suggested by Wi-
erzbicki [62] within the context of what is known as
the RPM. The idea of this method is to incorporate
into model (4) a small regularization term, such as
eS°%  (wi/k))fi(x), where € is an arbitrarily small
positive number, which forces the efficiency of the
resulting solution. The corresponding smooth for-
mulation, which forms the basis of the RPM, is:

0 Wi
min {D - EZﬁfi(x)}
i—1 i

3 %mfﬂm<D,i:L”Q ®)
x € Cs.

Therefore, within an RPM context, if the reference
points are fixed at their anchor values then the
regularization term becomes redundant and the
model is equivalent to a GP MINMAX or a CP
formulation (for the p = co metric). Interesting
relationships between GP and RPM can be seen in
work by Ogryczak [39].

So it can be said that the differences between
CP, GP, and RPM are more philosophical than
analytical. In fact the CP and RPM approaches

have an underlying optimizing philosophy whilst
GP has an underlying satisfying philosophy.
Technically, the differences among these ap-
proaches are minimal. It can be said that CP is in
one way less general than GP and RPM since it
specifies a particular value for each attribute (the
anchor value), although this seems a quite rea-
sonable practice [43]. However, in another way CP
is more general than GP and RPM since it con-
siders all metrics. Each GP variant only considers
a single metric and the RPM always uses the
p = oo metric. It should also be pointed out that
the possibility of minimising both deviational
variables (i.e. under as well as over achievements)
gives the GP formulations an important feature
that CP or RPM cannot easily accommodate.

4. Goal programming and utility functions
4.1. A utility interpretation of GP

In this section the different GP variants will be
interpreted in terms of utility. That is, the DM’s
preference structure underlying each variant will
be examined. Moreover, given the connections
between GP and the other distance function
methods (CP and RPM) established in Section 3,
some ideas about the utility structure underlying
these methods will be highlighted.

Starting with LGP: The non-compatibility be-
tween utility functions and lexicographic orderings
is well known [11]. That is, an LGP model does not
optimise the DM’s utility function. In order to
assess the effect of this property on the pragmatic
value of LGP it is necessary to realise that the
reason for this non-compatibility lies in the non-
continuity of preferences inherent to lexicographic
orderings. In fact, an assumption of non-continu-
ity of preferences implies the impossibility of or-
dering the DM’s preferences by a monotonic
numerical representation or utility function [44].

Therefore, within an LGP context, the worth-
while matter of discussion is not whether to dis-
qualify the lexicographic approach or not because
of the commented incompatibility. Rather it is to
investigate whether the reality of the problem sit-
uation is compatible with the assumption of the
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continuity of preferences. There may be many
scenarios, chiefly within a natural resources man-
agement context, where the non-continuity of
preferences seems plausible. For instance, let us
assume a forestry planning problem where two
attributes are considered: timber production and
an index measuring the risk of biological collapse
of the forest. It is obvious that in this context the
acceptance of the continuity of preferences would
be unrealistic. Indeed, the assumption of continu-
ity would imply accepting that there is always an
increment in the volume of timber produced which
compensates an increase in the risk of biological
collapse of the forest, no matter how great the
value of this index. In this kind of situation a non-
compensatory lexicographic model can accurately
reflect the reality being modelled.

Concerning WGP: Dyer [13] demonstrates how
the underlying utility function of this GP variant is
additive and separable. Moreover, if in a WGP
model the targets have been set at their anchor val-
ues, a linear and additive utility function is maxi-
mised. Hence, WGP can be viewed as a specification
of an additive utility function, so the assumption of
mutual preference independence must hold [43].

With regard to MINMAX GP, first consider
the case where all targets are fixed at their anchor
values. In this case the solution provided by the
MINMAX GP model represents a balanced allo-
cation among the achievements of the different
goals [2,3]. Hence the solution generated by this
type of GP formulation satisfies the following
chain of equalities:

:—ll[bf—fl(x)] - ... ::—l’[bf—ﬁ(x)] =

=%%—mm. (10)

The utility contours compatible with Eq. (10) are
actually made up of straight lines that intersect at
right angles at the line defined by the equation
(wi/k)[b] — fi(x)] = (w2/k2)[b5 — f2(x)]. Algebra-
ically, these contours are represented by the fol-
lowing utility function:

w,

v = { max | 707 - )| | (1)

i<1<Q

This kind of utility function is usually called a
Rawlsian function because of the connections be-
tween it and the principles of justice introduced by
Rawls [41]. The perfectly equilibrated character
(Rawlsian) of a MINMAX GP is rigorously true
only when the targets are fixed at their anchor
values. In general for any vector of targets (with
no anchors) the solution provided by a MINMAX
GP model coincides with, or is the nearest possible
solution to, a Rawlsian perfectly equilibrated so-
lution. This kind of solution as well as the corre-
sponding utility function shall be called quasi-
Rawlsian.

Some authors (e.g. Steuer and Choo [53]) have
proposed, with the name of augmented Cheby-
shev, the following utility function:

U— _{1?,@9{%(1)? —f}(x)} — )v;%’f}(x)}.

This function, which has been used to build
interactive methods, is not a pure Rawlsian
function. In fact, for A = co, U becomes an ad-
ditive and linear utility function. For 1 =0, U is
a pure Rawlsian function. For small values of 4,
U can be considered a quasi-Rawlsian function.
It is also interesting to note the resemblance
between the augmented Chebyshev function and
the scalarising achievement function proposed by
Wierzbicki as a basis for the reference point
methodologies.

Given the links between the GP, CP, and RPM
methods established in Section 3, the following
intuitive utility interpretation can be given. It is
straightforward to see the separable and additive
characters of utility functions that underlie a CP
model when the metric is not p = oo, as well as
their Rawlsian character when p = co. Moreover,
when p =1 the corresponding separable utility
function is linear for each single attribute alone.
With regard to RPM, if the reference point is fixed
at the anchor values the underlying utility function
is Rawlsian, but for any other reference point the
utility function is quasi-Rawlsian. Table 1 sum-
marises the kind of utility structures that underlie
the different multi-criteria distance function
methods.
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Table 1
Utility structures of different MCDM distance approaches

MCDM technique Utility structure

WGP Separable and additive

MINMAX GP Rawlsian or quasi-Rawlsian

LGP Non-existance of a utility function (i.e. non-compensatory structure)

CP(I1=1) Separable, additive and linear in each single attribute

CP (2<II < ) Separable, additive and non-linear in each single attribute (quadratic for IT = 2, cubic for IT = 3...)
CP (IT = o0) Rawlsian

4.2. Incorporation of non-standard utility functions

The standard GP formulation allows for only a
linear relationship between the unwanted devia-
tion from the target value and the penalty contri-
bution to the achievement function. The gradient
of this relationship is given by the weight of the
deviational variable. This corresponds to the case
of a standard, linear utility function in the region
on the penalised side of the target value. However
in practice, utility functions may arise which are
neither linear or continuous.

This observation led to a series of papers which
expanded the flexibility of the basic GP model to
cover a widening range of underlying utility
functions. Charnes et al. [9] allow for a ranged
target value rather than a single point. Kvanli [27]
and Can and Houck [5] use piecewise linear in-
creasing utility functions in financial planning and
water planning, respectively. Romero [44] gives a
description of the theory of this type of utility
function (also known as a penalty function).
Martel and Aouni [35] give a method for inte-
grating the Promethee type utility functions into
the GP model. Most recently, Tamiz and Jones
[55,56] give a method of modelling any non-linear
discontinuous, monotonically increasing utility
function whilst remaining within the GP format.
This method breaks the utility function into a se-
ries of four basic types of preference change.

e [ncrease in preference: an increase in the per-unit
penalty at a point.

o Decrease in preference: a decrease in the per-unit
penalty at a point.

e Discontinuity: a sudden increase in penalty at a
point.

o Non-linearity: a section in which the underlying

utility function is non-linear. This case is mod-
elled as a series of increases and decreases in
preference.

Further details of this method and an applica-
tion to a manufacturing model are given in [55].

5. Feasibility of ranking MCDM techniques

The fast growth of MCDM has generated an
impressive number of operational approaches. It
can be said that nowadays the analyst is besieged
by an enormous amount of seemingly sensible
MCDM tools. This proliferation in MCDM tools
has led some authors to establish something re-
sembling a ranking of MCDM techniques ac-
cording to their advantages and disadvantages. In
these rankings GP appears in almost the last po-
sition! In this section, the practical value of such
rankings is assessed.

Among others, Gershon and Duckstein [18,19],
Ozernoy [40], and Tecle and Duckstein [61] give
the idea that the choice of an MCDM technique is
actually a multi-criteria problem in itself. Based on
this idea, they seek to develop an algorithmic
structure capable of ordering a set of MCDM
techniques. For instance Tecle and Duckstein [61]
develop an algorithm to rank 15 popular MCDM
techniques. This algorithm is underpinned by a
multi-programming technique known as compos-
ite programming (CTP) which is an extension of
CP.

As a result of their research, they find CP, CTP,
the method of the displaced ideal, and cooperative
game theory to be the “best” techniques. On the
contrary, the STEM method, GP, and the surro-
gate worth trade-off method occupy the bottom of
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the ranking. Although the authors check the ro-
bustness of the algorithm as regards the weights
used, they do not check this aspect with regard to
other crucial parameters. These parameters in-
clude the DM’s competence; the complexity of the
set of constraints; the number of criteria under
consideration, etc.

In our view this procedure, as is common with
all similar attempts, has an underlying problem of
logical circularity. Indeed, one may wonder why
the authors choose CTP to rank the different
techniques. Is the ranking robust with respect to
the technique chosen? This problem is reminiscent
of the old philosophical problem of justifying in-
duction by resorting to the inductive principle. In
this case, Tecle and Duckstein [61] justify the su-
periority of CP and CTP by resorting to CTP (an
extension of CP). It is obvious that this kind of
result is not exempt of certain circular bias.

It is also important to consider how GP — an
approach based on a Simonian philosophy of
satisfying; STEM — based on an interactive opti-
misation philosophy with local preferences; or
multi-attribute utility theory (MAUT) — based on
a utility philosophy with absolute preferences, can
be compared through a mechanistic algorithm? In
short, each MCDM technique is based on a phi-
losophy and there is not a single “correct” phi-
losophy.

Even though the efforts mentioned above are
well articulated, they assume a philosophy which is
not easy to accept: i.e. it is possible to build an
algorithm to rank different MCDM techniques”. It
is difficult to accept that this interesting problem
can be tackled in such a mechanistic way, without
attaching decisive importance to the practical
features of the decision problem under consider-
ation.

A different attitude of philosophy towards the
problem consists in accepting that the relative
advantages and disadvantages among the MCDM
approaches will depend largely on the character-
istics of the problem situation. Within this phi-
losophy GP again appears as a flexible and
pragmatic MCDM methodology which is the most
suitable for application to many decisional con-
texts. Indeed, for a decision model with many
criteria, say, for example seven, and a complex

constraint set (several hundred constraints and
decision variables) it is only tractable by the for-
mulation of a GP model.In fact, a problem of this
size can have several thousand extreme points [52]
and hence it is unrealistic to even try to obtain a
good approximation of the efficient set through
MOP techniques.

6. Other recent advances in Goal Programming

The advancement of the theory and practice of
GP is maintaining a steady rate. This section
briefly reviews the many other advances in the field
of GP not detailed in the above sections.

o [nteractive GP: The area of interactive algo-
rithms has provided a major aid in improving
the flexibility of the GP model and allowing
DMs to become involved in the solution process
and thus find a set of target values and weights
that produce the best solution according to their
preferences. Popular GP interactive algorithms
include the methods of Spronk [51], Nakayama
[37], Hwang and Masud [36], and an adapted
version of the Zionts and Wallenius MOP meth-
od [4] by Lara and Romero [29]. More recent
GP interactive algorithms are given by Reeves
and Hedin [42] and Jones [24]. In addition, Gar-
diner and Steuer [15] incorporate GP interactive
algorithms into their unified MOP interactive al-
gorithm.

e Teaching of GP: With many students of today
becoming the OR practitioners of tomorrow,
the accurate teaching of the concepts behind
GP is an important field in terms of accurate
modelling. Papers by Lee and Kim [31,32] and
Shim and Chin [49] give modern approaches
to, and analysis of, this issue. In addition, Igni-
zio and Cavalier [21] provide an excellent, mod-
ern, textbook for tutorial purposes.

e GP for infeasibility analysis: An interesting re-
cent new area in which GP has been found to
be of use is that of the analysis and resolution
of infeasibility in linear programmes. The initial
comparison between the GP formulation and
the initial stage of the LP simplex method (find-
ing a feasible solution) is first remarked upon by
Charnes and Cooper [7]. This concept is more
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fully developed and applied to modern day in-
feasibility analysis methods by Tamiz et al. [59].

o GP and its interface with artificial intelligence:
The use of GP for the analysis of, and use in, is-
sues regarding the field of artificial intelligence,
provides another field of development for GP.
Ignizio and Cavalier [21] explain the rudiments
of this new hybrid field. Relevant work on this
issue is given by Love and Lam [34].

e GP in combination with other management sci-
ence techniques: A successful refinement to the
use of GP is its combination with other manage-
ment science techniques in order to produce
more accurate GP models. Of particular impor-
tance in this area is the work by Gass [16,17] re-
garding the use of the AHP to produce accurate
weights (see Section 2.3). The work of Khor-
ramshahgol [25,26] incorporates GP into a deci-
sion support system by combining it with the
Delphi method for the purposes of preferential
weight estimation.

e Stochastic GP: The case where the parameters
of the GP model (goal values, technical coeffi-
cients, achievement function weights) are not
known with certainty is termed stochastic GP.
Liu [33] presents a method for solving stochastic
GP based on genetic algorithms. The area of
stochastic GP is closely related to fuzzy set the-
ory, hence the term fuzzy GP is used.

e Non-linear GP: The majority of GP applications
are directed towards the linear case, that is GP’s
with a linear achievement function, goals, and
constraints. However GP is not limited to the
linear case. There are some applications that uti-
lise non-linear GP. This is particularly true in
the application area of Engineering. A special
case of non-linear GP is fractional GP, where
the achieved value of the objective consists of
a linear function divided by another linear func-
tion [44].

7. Conclusion and future research trends

Several implications for the modelling and
analysis of future GP models and for direction for
new GP research can be deduced from the findings
of this paper. These are enumerated below:

1. GP is a pragmatic and flexible methodology es-
pecially capable of addressing complex decision
variable problems where several objectives as
well as many variables and constraints are in-
volved.

2. The choice of GP variant has generally been
conducted in a mechanistic way. However, the
right variant should be chosen so as to be co-
herent with the DM’s structure of preferences.
Extra flexibility in this area can be given
through the use of non-standard preference
curve modelling techniques.

3. Careful analysis should be conducted both be-
fore and after solving the problem to ensure
that modelling pitfalls are avoided. Modern ap-
proaches to techniques such as normalisation
and pareto efficiency detection and restoration
can be used for this purpose.

4. The reliance on a single GP variant is not, in
general, justified. In fact, in most real-life cases
the best modelling practice should include sev-
eral variants.

5. There is an excessive use of LGP in the litera-
ture. LGP models are only valid for decision
models with discontinuous preferences. If used,
LGP models should not include an excessive
number of priority levels because of problems
with redundancy.

It is hoped that the analysis in this paper gives a
clear overview of the area of GP as a decision
support tool. It documents the recent advances in
this area, and should lead DMs into a clearer un-
derstanding of the pitfalls to be avoided, and
benefits gained from, the use of GP to provide
solutions to the real-world multi-objective prob-
lems they are facing.
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