Production Models: Maximizing ProfitsRobert Fourer, David M. Gay, and Brian

Kernighan

-Presenting by Afzal Hossain

Production Problem

- Constraints on resources
- Make products within constraints
- Maximize profit from production
- Maximize C'x

Ax <= b

x > = 0

Toy Problem:

Tons per hour: Bands 200 Total production

Coils 140 hour: 40

Profit per ton: Bands \$25

Coils \$30

Maximum tons: Bands 6000

Coils 4000

XB=? XC=?

Maximize 25* XB + 30* XC

Subject to $(1/200)^* XB + (1/140)^* XC \le 40$

0<=XB<=6000

0<=XC<=4000

Linear program in AMPL

Mathematical Notation:

Maximize Subject to

25* XB + 30* XC

(1/200)* XB + (1/140)* XC <=40

0<=XB<=6000 0<=XC<=4000 products rather than 2, more than 100 values will be added in the script

What if we had 40

maximize Profit: 25*XB + 30*XC;

subject to Time: (1/200)*XB + (1/140)*XC <=40;

subject to B_Limit: 0<=XB<=6000; subject to C_Limit: 0<=XC<=4000;

ampl: model prod0.mod;

ampl: solve;

var XC;

MINOS 5.5: optimal solution found.

2 iterations, objective 192000

ampl: display XB, XC;

XB=6000 XC=1400

ampl: quit;

Linear programming model

- Sets, like the products
- **Parameters**, like the production and profit rates
- Variables, whose value is to determine
- An objective, to be maximized or minimized
- Constraints, that the solution must satisfy

```
Given: P, a set of products a_j = 	ext{tons per hour of product } j, for each j \in P b = 	ext{hours available at the mill} c_j = 	ext{profit per ton of product } j, for each j \in P u_j = 	ext{maximum tons of product } j, for each j \in P Define variables: X_j = 	ext{tons of product } j to be made, for each j \in P Maximize: \sum_{j \in P} c_j X_j Subject to: \sum_{j \in P} (1/a_j) X_j \le b
```

 $0 \le X_i \le u_i$, for each $j \in P$

Figure 1-1: Basic production model in algebraic form.

steel.mod set P: param a { i in P}; param b: param c { j in P}; param u { j in P}; var X { j in P}; maximize Total Profit: sum { j in P} c[j] * X[j]; subject to Time: sum $\{ i \in P \} (1/a[i] * X[i]) \le b;$ subject to Limit { i in P}: 0<= X[i] <=u[i]: steel.dat set p:= bands coils; param: u:= С 200 6000 bands

140

ampl: model steel.mod; ampl: data steel.dat;

30

4000:

coils

param b:=40;

ampl: solve;

An improved model

```
steel.mod
set P; _____
param a { i in P}; ______ param rate {PROD}>0;
param b; _______ param avail >= 0;
param c { j in P}; _____
param u { j in P}; ______
subject to Time: sum \{i \in P\} (1/a[i] * X[i]) \le b;
subject to Limit { i in P}: 0<= X[i] <=u[i]: ___
```

steel.dat

```
set p:= bands coils;
param:
                          u:=
             200
bands
                          6000
coils
             140
                    30
                          4000:
param b:=40:
```

```
steel.mod
set PROD:
param profit {PROD}>=0;
param market {PROD}>=0;
var make {p in POD}>=0, <=market[p];</pre>
maximize Total Profit: sum {p in PROD} profit[p] * make[p];
```

subject to Time: sum {p in PROD} (1/rate[p] * make[p]) <= avail:

steel.dat

```
set PROD:= bands coils;
              profit market:=
param: rate
bands
              200
                     25
                             6000
              140
coils
                     30
                            4000:
param avail:=40;
```

steel.dat

```
set PROD:= bands coils plate; -
              profit
param: rate
                    market:=
              200
                     25
                            6000
bands
              140
                     30
                            4000
coils
plate
              160
                            3500:
param avail:=40;
```

Add new products without changing model

Add lower limits

```
set PROD;
param rate {PROD}>0;
param avail >= 0;
param profit {PROD}>=0;
param market {PROD}>=0;
param commit {PROD}>=0
var make {p in PROD}>=commit[p], <=market[p];</pre>
maximize Total Profit: sum {p in PROD} profit[p] * make[p];
subject to Time: sum {p in PROD} (1/rate[p] * make[p]) <= avail;
steel.dat
set PROD:= bands coils plate;
                    profit commit
             rate
                                        market:=
param:
bands
             200
                    25
                           1000
                                        6000
             140
                    30
                            500
                                        4000
coils
plate
             160
                            750
                                        3500:
param avail:=40;
```

steel.mod

Adding resource constraint

Figure 1-6a: Additional resource constraints (steel4.mod).

```
set PROD := bands coils plate;
set STAGE := reheat roll:
param rate: reheat roll :=
  bands
               200
                      200
  coils
               200
                      140
               200
                      160
  plate
          profit commit
                          market :=
param:
  bands
            25
                   1000
                            6000
  coils
            30
                    500
                            4000
  plate
            29
                            3500 :
                    750
param avail := reheat 35
                            roll
                                    40
```