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CHAPTER 3

THE AGENT-BASED MODEL (AGiLESim) OF THE ANOPHELES

GAMBIAE MOSQUITO LIFE CYCLE

3.1 Introduction

In this proposal, we will describe an agent-based model for simulating the

Anopheles gambiae mosquito life cycle by tracking Anopheles’ eight distinct life

states and the transitions among these states. The purpose of our study is to build

a core model which reasonably presents the biology and behavior of Anopheles

mosquitoes, and provides the basic framework for further research, such as ex-

ploring the impact of genetic mutation in Anopheles mosquitoes on the current

malaria control interventions.

3.2 Background

3.2.1 Significance of Modeling the Life Cycle of Anopheles Gambiae Mosquitoes

Malaria is a mosquito-borne infectious disease. Of the approximately 430

known species of Anopheles, this disease is transmitted among humans by only

30-50 species of adult females [61]. There are two ways to decrease malaria trans-

mission from the perspective of mosquitoes. One is to reduce the population of

mosquitoes. Another is to change the population age structure and shorten adult
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mosquito longevity. Some control efforts such as Indoor Residual Spraying (IRS)

actually use the later method to interrupt malaria spread.

Because of its critical role in the malaria transmission, understanding and

modeling its population dynamics and behavior can help understand how malaria

can be endemic in an area, and assist in designing cost-effective malaria control

strategies to restrict malaria transmission to a lower level.

3.2.2 Equation-based Models (EBMs) vs. Agent-based Models (ABMs)

EBMs identify system variables and are a set of equations that express the

relationships among these measurable variables. These equations may be algebraic

or more complex differential functions, capturing the variability of the system over

time and space.

Agent-based models consist of heterogeneous micro-entities, referred to as

“agents”. In [26] and [27], the authors summarize the characteristics of an agent

as follows:

1. An agent is a discrete entity with a set of attributes and behaviorial rules

that make the agent be autonomous.

2. An agent is always living in an environment where it interacts with other

agents.

3. An agent has the ability to learn and adapt its behaviors over time. So an

agent might have some rules that modify its existing behaviorial rules.

These behavior encapsulated agents make up the whole simulation system.

EBMs and ABMs also share some common characteristics. To simulate a sys-

tem, both approaches construct a conceptual model. And then they program and
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execute it on a computer. In both models, individuals and measurable charac-

teristics are recognized. In addition, ABMs can have equations in them too. For

example, in [31], the larval density-dependent mortality was approximated by a

function having three independent variables.

The two ways in which equation-based models and agent-based models essen-

tially differ were well discussed in [25]. One is the relationships among objects in

their models. EBM starts with equations that state relationships among system

variables. The evolution of the variables through time is attained by evaluat-

ing these equations. ABM begins with individual behavior rules based on which

agents interact to each other. In ABM, direct relationships among system vari-

ables are not an input of the simulation, but an output. Another fundamental

difference is the level they focus on. EBM focuses its attention on making use of

system-level variables. On the contrary, ABM defines agent behaviorial rules in

terms of individual-level information. In other words, the system-level variables

are not explicitly used to drive the dynamics in ABM.

3.2.3 History of Modeling Malaria Epidemiology

In the history of mathematical modeling malaria epidemiology, the traditional

differential or difference equation-based models [17, 18, 19, 20, 21, 22, 23, 24]

played an very important role. In the early 1910’s, Ross first generalized a math-

ematical epidemic model for malaria as a host-vector disease in 1911 [17]. He also

discovered the existence of malaria transmission thresholds that only if the number

of Anopheles per head of population exceeds a certain figure, can malaria break

out. In the 1950’s, as early successes with DDT (dichlorodiphenyltrichloroethane)

used for a global campaign of malaria eradication, Macdonald developed the Ross’s
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work further. His model [18] implied that the mortality of adult female vectors

is the most critical element in the malaria life cycle, and he also mathematically

concluded the impact of reducing mosquito longevity on malaria transmission. In

the Macdonald’s model, the concept and mathematical expression of basic repro-

ductive number (R0), the mean number of secondary cases a typical single infected

case will cause in a population, was first presented in malaria epidemiology. This

metric helps determine whether malaria will spread through a population or will be

extinct in the long run. But his model ignored the influence of human population

dynamics such as human immunity on transmission. Later, in the 1970’s, immu-

nity and superinfection of the human population were first presented by the Dietz’s

mathematical model [19]. This model defined the immunity of the human popula-

tion as a function of the dynamics of the vector population, and specified a critical

vectorial capacity, below which malaria cannot be maintained at an endemic level.

More recently, a few individual-based simulation models of malaria epidemiology

have been presented [7, 8, 9, 10]. For example, a discrete-event model of malaria

epidemiology [8] defined interactions among individual humans and mosquitoes

as stochastic events governed by biological rules. It also represented the devel-

opment of Plasmodium falciparum in these individuals. The immunity of human

individual was also incorporated in this model. But they largely ignored mosquito

population dynamics. For another instance, in [10], an individual-based model of

Plasmodium falciparum malaria transmission was presented. This model tracked

the dynamics of human hosts and adult female mosquitoes individually and the

human-vector contracts, and also incorporated human immunity as a function of

human exposure history. They used this model to evaluate the effect of two kinds

of malaria control programs: reducing human-vector contact rates and implement-
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ing malaria case detection and drug treatment.

These models helped researchers better understand malaria dynamics, more

wisely analyze collected field data and make more realizable predictions about

when, where and how malaria may break out and spread. What the mathematical

models had in common is that they investigated the relationship among hosts,

vectors and malaria parasites at the population level, assuming the hosts and

vectors in their models were identical. And they also have a high requirement for

complex mathematics. However, when simulating malaria epidemiology, agent-

based models allow us to take considerable individual variability of parasites,

hosts and vectors into account, and investigate how macroscale properties such as

Entomological Inoculation Rate (EIR) emerge from microscale interactions and

adaptive behavior of heterogeneous individuals. In these models, randomness in

decision making and various parameters from statistical distributions can be easily

incorporated.

3.2.4 Advances in Computing Power

Now, hardware capability is no longer a bottleneck that impedes progress to-

ward large-scale data-intensive simulations. As the development of both hardware

and software technology, such as multi-core processors [57], faster but cheaper

memories, larger capacity but lower cost hard disks, high speed Gigabit networks

and powerful distributed computing clusters and grids, it is easier and possible to

build large-scale compute-intensive agent-based simulations in a variety of areas

[7, 8, 9, 10].
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Mosquito

-Mname : int                         -TimeinIA: int

-MAge: int                           -TimeinMS: int

-MSex: char                          -TimeinBMS: int

-MStage: char                        -TimeinBMD: int

-MGenotype: string                   -TimeinG: int

-MateGenotype: string                -MaxNumofEggs: int

-TimeinEgg int                       -AvailableNumofEggs: int

-TimeinLarva int

-TimeinPupa int

-CulultvDevlpinLarva float

+Mosquito(string Genotype,  char Sex, char state, int seed,
float Temperature)

+Mmate(string Genotype): VOID

+ Movipostion(vector<Mosquito> *MFemaleNewbornEggs,
vector<Mosquito> *MMaleNewbornEggs, string MaternalGenotype,
string PaternalGenotype,unsigned int N_efctinH, int
K_DMRofHabitat, int HabitatWeight, float Temperature): VOID

+ MUpdate(float DailyTemp, string Genotype, vector<Habitat>
*Habitats, int SimDay, int seed, NewbornEggsHabitats
tmpNewEggsHabitats[50]): VOID

Figure 3.1. The Mosquito Class Diagram.

3.3 Model Overview

3.3.1 Agents in the Model

There are two kinds of agents in AGiLESim: mosquito and habitat.

Each mosquito agent is distinguished by a number of elementary characteris-

tics: age, sex, genotype, stage and so on. It also has some specific behaviors such

as mating and state updating. The mosquito class diagram is shown in Fig. 3.1.

Each habitat agent is characterized by the attributes such ecological factors

as carrying capacity, the numbers of eggs, larvae and pupae. It also employs

the adding, killing and updating functions to maintain the development time and

daily mortalities of mosquito eggs, larvae and pupae within it. At present, we have
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Habitat

-a_DMR : float                  -K_DMR : float

-N_onedaylarva: unsigned int    -N_EfctinH: unsigned int

-TotalPopulation: unsigned int

-EggPopulation: unsigned int

-LarvaPopulation: unsigned int

-PupaPopulation: unsigned int

-Meteorologicalfactors: Mtrlfactors

-vector<Mosquito>: MaturePupae

+Habitat(float CCapacity);

+AddMsqtes(vector<Mosquito> *NewbornEggs): VOID

+KillMsqtes();: VOID

+UpdateImmatureMsqtes(): VOID

+GetPopulation_atA(): unsigned int

+GetEggs(): VOID

+GetPupae(): VOID

+ChangeEcology(Meteorologicalfactors mtrlfactors): VOID

Figure 3.2. The Habitat Class Diagram.

not taken spacial properties into account. So there is no geographical difference

among habitats. Fig. 3.2 is the habitat class diagram.

3.3.2 Phases and Processes in the Anopheles mosquito life cycle

In our model, the Anopheles mosquito life cycle shown in Fig. 3.3 has two dis-

tinct phases: aquatic and adult. In the aquatic phase, there are three sub-stages:

egg (e), larva (l ) and pupa (p). We also subdivide the adult phase into five

sub-stages, which are ImmatureAdult (IA), MateSeeking (MS), BloodmealSeek-

ing (BMS), BloodmealDigesting (BMD) and Gravid (G). Of these five adult

stages, only (IA) and (BMD) are temperature-dependent. And the development

time in the three aquatic sub-stages also rely on daily temperature.
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Figure 3.3. The Whole Biological Model of AGiLESim.
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1. At IA, a mosquito emerging from water has to wait a few days until its

external skeleton hardens and it becomes dry. So when it emerges and the

daily temperature is lower than 20�, it usually takes up to 3 days. However,

if the temperature is higher than 35�, it only needs one day to grow up from

an immature adult to a mature adult. Between 20� and 35�, two days are

needed before it locates a mate.

2. Coming out of IA, male mosquitoes will stay at MS for their rest of life

until they die. However, for female adults in our model, they can always suc-

cessfully find males to mate with and enter BMS, going out to search blood

meals. We assume this state transition from MS to BMS is independent

of the daily temperature.

3. At BMS, females generally fly out and seek a host at night. We assume

here that a female mosquito can always encounter and feed on at least one

host on a given night. Once the female has completed biting the host, she

will immediately search for a resting place to digest the meal. So the state

transition to BMD is assumed to happen within one day and does also not

depend on the daily temperature.

4. However, BMD is highly temperature-dependent. At this stage, mosquitoes

at different daily temperatures take different lengths of time to digest meals

and develop their eggs. When the temperature drops to 18�, she needs

to wait 4 days before she becomes gravid. But as long as the temperature

slightly ascends to 23�, the development time can be shorten to 2 days.

Between 18� and 23�, three days are needed.

5. At G, one female mosquito can lay a clutch of around 80 eggs, which is
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normally distributed with mean of 80 and standard deviation of 12. We

arbitrarily set that a female only randomly samples at most 3 habitats each

day. If all eggs are laid within one day, she will head back for BMS based

on rule 6. If they are not, she has to stay at G and waits for another day to

lay the rest of eggs. She does not leave G for BMS until she has no eggs

left.

6. After oviposition, the time for a female to go back to search another meal,

namely to return to BMS, depends on how many habitats the gravid fe-

male has sampled on the previous night. When a female is able to find an

unsaturated habitat and lay all developed eggs into that oviposition site, she

will be able to move back to BMS on the same day. However, if she has

to sample two habitats before she lays all eggs, the time to return to BMS

is either 0 or 1 day, with a discrete probability distribution of 0.5 and 0.5

respectively. She has to wait for the next day to search another host if she

lays its eggs among three habitats on the previous night.

The duration lengths (in days) of 5 adult states: IA, MS, BMS, BMD and

G are summarized in Table 3.1.

3.3.3 Scales Addressed in AGiLESim

We adopted discrete time step, the length of which is one day.

The simulation started with an initial population of 1000 adult mosquitoes:

half females and half males at IA. It was run on the machine with two dual-

core Intel Xeon 3 GHz and eight 4GB DDR2 FB-DIMMs with Mac OS X Server

10.6.2. The simulation took around 40 minutes to get one-year data with the
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State Duration (in Days)

Temperature(�) ≤ 20 21∼35 ≥ 36

ImmatureAdult
Days 3 2 1

Temperature(�) -∞ ∼ +∞

MateSeeking
Days 0

Temperature(�) -∞ ∼ +∞

BloodmealSeeking
Days 0

Temperature(�) ≤ 18 19∼22 ≥ 23

BloodmealDigesting
Days 4 3 2

Temperature(�) -∞ ∼ +∞

Gravid(EggsRemaining)
Days 1 ∼ +∞

Sample # of habitats/oviposition 1 2 3

Gravid(NoEggsRemaining)
Days 0 50%:0 50%:1 1

TABLE 3.1

The State Duration (in Days) Table.

daily average values of 7000 adult mosquitoes and 70,000 immature mosquitoes

including eggs, larvae and pupae in the system. Although this machine has four

cores, our simulation is currently not parallel. So in fact only one core was fully

used when the simulation was running on the machine. The time will be much

shorten after we introduce MPI into our simulation in the future.

3.4 Design Concepts

3.4.1 Interactions

The concept of interaction in an agent-based simulation refers to how agents

communicate with, or affect other agents[28]. In order to resemble the real ecolog-

ical system in which Anopheles Gambiae mosquitoes live, we assume that there
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are three types of interactions in our model.

1. An interaction between a female adult and a male adult when they are

mating.

When a female adult enters MS stage, she will randomly choose one male

adult also at MS to mate. After mating, the genotype of the selected male

adult will be stored in one data field named as MMaleGenotype within the

female agent. The genotypes of their offspring are based on it and the

female’s genotype. This is a so-called direct interaction[28], by which an

explicit encounter among agents for information exchange has happened.

2. An interaction between an ovipositing female adult and a habitat.

Some researchers in [37][38] has denoted that female adults of Anopheles

Gambiae prefer to avoid ovipositing in conspecific larvae crowded habitats

so that the impact of intra-specific competition and overcrowding on this

species is avoided. In addition, eggs and pupae need to take up some space

within one habitat, so these two populations also do affect the number of

eggs one female will lay into that habitat. This interaction was implemented

by a function that calculates how many eggs a gravid female can lay in a

specific habitat (please see 3.5.3.3 about the function for more details). In

this function, there are three arguments that are the egg, larva and pupa

populations. This is also a direct interaction between a mosquito agent and

a habitat agent.

3. An interaction between a gravid female adult and the aquatic agents in a

habitat.
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This interaction is actually implicitly expressed in the above second inter-

action. Whether gravid females lay eggs in one specific habitat or not is

based on the cumulative or average influence of the aquatic residents living

in that habitat. This kind of interaction is called as Field Interaction in [28].

In other words, each agent is affected by a local field of interaction that is

created by other agents.

4. Different larvae within the same habitat compete for food and room.

Since the survival of Anopheles larvae is affected by the quantity of food

available and the size of space where larvae live [29], the shortage of food and

limitation in space significantly increase mortality of larvae. Moreover, some

research results demonstrated in [30] show that cannibalism and predation

from older Anopheles larvae on younger Anopheles larvae are very common.

So in our model, this interaction among larvae was implemented by assigning

different daily mortality rates to different age groups of larvae. Since the

older larvae are, the stronger and higher competition for food and living

space they have. So older larvae have lower daily mortality rate than younger

ones. The larval mortality function will be discussed in detail in 3.5.3.1.

This competitive interaction is defined as a mediated interaction in [28],

which means the individuals affect others by consuming common resources.

3.4.2 Stochasticity

We incorporate random numbers and probabilities into our simulation as fol-

lows:

1. Stochasticity is used to represent variability in weather data input.
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We assume the daily temperature is normally distributed with mean of the

monthly average temperature and standard deviation of 0.1. For example, if

the monthly average temperature of one area in January we are modeling is

25�, then the time series of daily temperatures in January will be obtained

by drawing a value from N(25, 0.1). But the temperature fluctuation within

one day (24 hours) is neglected in our model.

One alternative to synthesizing the stochastic weather input is to incorporate

a time series of observed real weather data. In order to include more natural

weather trends, periodic and rare events, we might substitute the current

stochastic weather model with real weather data collected in local weather

stations in the future.

2. Specifying the statistical normal distribution for the state variables of mosquito

agents.� After mating, one gravid female can lay a clutch of up to 120 eggs,

which is drawn randomly from a normal distribution with an empiri-

cally determined mean of 80 and standard deviation of 12:

Egg/clutch ∼ N(80, 12)

.� The cumulative development time at the larval stage: CDT Larva, de-

scribed in detail in 3.5.3.2. When CDT Larva is greater than 1 +

N(0, 0.1), the larval stage is considered completed:

CDT Larva ∼ 1 + N(0, 0.1)
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� if an ovipositing female needs to sample two habitats to lay all eggs,

the time for her to return to BMS is either 0 or 1 day, with a discrete

probability distribution of 0.5 and 0.5 respectively.

3. Whether mosquito agents die or not at each time step is determined stochas-

tically. This rule is used in the following four scenarios.� In each age group of adults, mosquito agents have the same probability

to be dead. So here, we use a discrete uniform distribution to obtain a

series of mosquitoes that need to be killed on a given day.� For the egg group in a habitat, we also use a discrete uniform distribu-

tion to choose a calculated number of eggs to kill.� The same discrete uniform distribution function is also used for the

daily loss for each larval age group in each habitat.� For the pupa group in a habitat, the same discrete uniform distribution

function is also used.

All stochastic numbers are generated by the third-part free computing routines

provided by the GNU Scientific Library (GSL)[59].

3.4.3 Scheduling

In our model, time is treated as discrete, with processes happening over daily

time steps. Ideally, during each time step, events should be concurrent, all hap-

pening simultaneously. For example, the daily updates of aquatic mosquitoes in

each habitat and mature mosquitoes occur concurrently in the real world. But

when we actually implement the simulation, we have to decide on the order in

which all concurrent processes in our model are executed. Different executing
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order will bring on different simulation data because the outcome of the previous

event might influence the simulation of the next event. Therefore, we choose a

predetermined order in which our events are executed.

There are totally five events happening in each time step, which are:� Killing part adults based on adult daily mortality rates;� Killing part aquatic mosquitoes in each habitat based on daily mortality

rates;� Updating aquatic mosquitoes in all habitats that survived during this time

step;� Updating adult mosquitoes that survived in this time step;� Collecting the data for statistical analysis and biological observation. The

data includes the population size of mosquitoes at each state and so on.

Our scheduling of specifying the exact order in which the above five events

occur is shown in Fig. 3.4. We arbitrarily set a rule here that new emerging

mosquito adults produced in Model3 and new born mosquito eggs created in

Model4 do not be processed including killing and updating during the current

time step. They have to wait for the next day.

3.4.4 Sensing

Sensing is the way that agents obtain knowledge about their world. In AG-

iLESim, we assume that female adults are able to know how full a habitat is

of aquatic mosquitoes. This assumption can be supported by several studies in

[37][38].
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Each day/time step

Module1:
Kill part
of adults
based on
their DMRs

Module2:
Kill part
of aquatic
mosquitoes
based on

the DMRs in
each

habitat

Module3:
Update
aquatic

mosquitoes
in all

habitats

Module4:
Update all

adult
mosquitoes

Module5:
Collect
data

Figure 3.4. The scheduling Order of Five Events During Each Time Step
in AGiLESim.

3.5 Details

3.5.1 Initialization

There are three kinds of input data needed to initialize our simulation. (The

following are examples we have used for testing, verification and validation pur-

poses.)

1. We start the simulation with a simple scenario: an arbitrary number of adult

mosquito agents at IA with half females and half males are injected into the

system. Since the initial population size has little impact on the population

dynamics when the system reaches equilibrium, 500 adult females and 500

adult males are thought enough to warm up the whole system.

2. There are five habitats with the carrying capacities of 5,000, 5,000, 10,000,

20,000 and 30,000. The natural hazard mortalities of these habitats are the

same, which are 0.1.

3. The precipitation parameter and the temperature profile. At present, the

precipitation parameter used in DMR larva is 1. The annual temperature
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profile is generated stochastically, in which the daily temperature is nor-

mally distributed with mean of the average temperature of the corresponding

month and standard deviation of 0.1.

3.5.2 Assumptions

1. Each batch of eggs a female adult lays consists of half females and half males.

2. Only the physiological hazard of aging affects the survival rate of adult

females and males. No other natural hazards from the environment do

contribution. Temperature is only one key factor affecting larval survival.

In the real world, there are many other key factors such as water quality,

predator, pathogens and so on [48, 49, 50].

3. When female mosquitoes enter BMS, they can always find blood meals for

the development of their eggs successfully.

4. Geographic properties of habitats have not been taken into consideration.

5. Ovipositing female adults can always successfully find breeding site(s) to lay

their eggs on a given night.

6. After sampling three habitats, if the gravid female still has some mature

eggs left on a given night, she will not search for breeding sites any more

but find a place to rest and wait for another night.

3.5.3 Methods

3.5.3.1 Daily Mortality Rates

1. Eggs and pupae:
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Since mosquito eggs and pupae do not feed, no food competition happens

at these two stages. Their daily mortality rates of DMR egg and DMR pupa are

fixed at 0.1, which is a minimum daily mortality rate reflecting the effect of natural

hazards on them.

DMR egg = DMR pupa = 0.1

2. Larvae:

In our model, larvae in different age groups have different daily mortality

rates. According to the studies in [29], if larvae of Anopheles Gambiae live in

an environment that is short of food and has limited space for their develop-

ment, the mortality of these larvae will be significantly increased. Moreover, some

research results demonstrated in [30] show that cannibalism and predation from

older Anopheles larvae on younger ones are very common when there is no enough

food on a habitat. In other words, older larvae have higher competition. Based

on this observation, in our model, older larvae have lower daily mortalities than

younger ones.

So the dail mortality rate of larvae in an age=i (days) larval group is defined

as follows:

DMR larva(x = i) = α · e
1

x·K·r
(

∞
P

j=1

j·Nj)

(3.5.1)

where α is the basic mortality caused by natural hazards and we arbitrarily

set it as 0.1; K is the carrying capacity of the habitat where this group of larvae

lives; r is the precipitation coefficient;
∞∑

j=1

j · Nj is one-day old larval equivalent

effective index, where j is the age (in days) of larvaes in this larval group, and Nj

is the abundance of larvae in this group.
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3. Adults:

In the early 1950’s, Macdonald firstly proposed that the survival rate of adult

mosquitoes does not change as they grow older [44]. And this conclusion was

widely accepted by a few researchers afterwards [19, 45, 46, 47]. They used the

constant daily mortality rates in their models of mosquito population dynamics.

On the contrary, many investigators [40, 42, 43] indicated that adult mosquitoes

do senesce and mortality is highly age dependent in adult females and males. [41]

mentioned the mortality pattern can be formulated by the Gompertz mortality

function (the logarithm of the mortality is linearly proportional to age). Later,

researchers in [40] found that Logistic or Logistic-Makeham hazard functions pro-

vide the best fit than the Gompertz’s for mortality patterns of the female and

male cohorts in their experiments.

In our model, we adopt the later opinion of age-dependent mortality, namely

the daily mortality rate of adult mosquitoes increases with age of the individuals.

We also choose the Logistic mortality function as follows for both adult females

and adult males:

DMR adult =
a · eAge·b

1 + a·s
b

(eAge·b − 1)
(3.5.2)

Where a is the daily minimum mortality rate and we set it as 0.1; b is the

exponential mortality that rises with Age; s is the degree of mortality deceleration.

This function can be interpreted as the proportion of adult mosquitoes that

fail to survive each day due to the physiological hazard of aging. It does not take

the other hazards such as natural predators and diseases and so on into account.
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Stage Development Time in Days

Temperature(�) ≤ 15 16∼20 21∼35 ≥ 35

Egg
Days 4 3 2 1

Temperature(�) ≤ 25 ≥ 26

Pupa
Days 2 1

TABLE 3.2

The Development Time at the Egg and Pupa Stages.

3.5.3.2 Development Time at Each Stage

1. Since mosquitoes are a cold blooded animal, the development time at the

egg and pupa stages highly directly depends on the temperature. At the

egg stage, with decreasing temperature, there is a general increase of the

development time for eggs to hatch [52, 53]. In our model, eggs take four

days to hatch when the temperature falls to 15� or lower. However, as the

temperature goes up to 36�, the mosquito egg incubation period is only

one day long. For pupae, they must live in water for two days when the

temperature is below 25�. Otherwise, at least one day is needed for the

pupa development.

The development time at the egg and pupa stages is summarized in Ta-
ble 3.2.

2. The development time at the larval stage:

At the larval stage, temperature is also a decisive regulator of the larval de-

velopment. In the late 1970s and early 1980s [33, 34], people have derived a

temperature-dependent development function for poikilothermic organisms
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based on an assumption that the reaction rate of a single enzyme deter-

mines the development of poikilotherm organisms. In [31], researchers well

investigated and summarized this function, and provided the parameters of

the function with reasonable values, with which the curve drawn by the

function well fit published or estimated Anopheles gambiae immature stage

development time data.

In our model, we adopted this function at the larval stage, which is the

development rate per hour at temperature T(◦K):

DevR larva(T ) =
ρ25◦C · T

298
· e[ ∆H

6=
A

R
( 1

298
− 1

T
)]

1 + e[ ∆HL

R
( 1

T 1

2
L
− 1

T

)] + e[ ∆HH

R
( 1

T 1

2
H
− 1

T

)]
(3.5.3)

The six parameters in the equation 3.5.3 are explained as follows [40]:� ρ25◦C : the development rate/hour when the temperature is at 25�.� ∆H 6=
A : the enthalpy of activation of the reaction catalyzed by the

enzyme (cal/mol).� ∆HL: the enthalpy change associated with low temperature inactiva-

tion of the enzyme (cal/mol).� T 1

2

L: the temperature(◦K) where 50% of the enzyme is inactivated by

low temperature.� ∆HH : the enthalpy change associated with high temperature inactiva-

tion of the enzyme (cal/mol).� T 1

2

H : the temperature(◦K) where 50% of the enzyme is inactivated by

high temperature.� R: is the universal gas constant of 1.987(cal/mol).
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Figure 3.5. The DevR larva curve Used in AGiLESim.

In our model, we use ρ25◦C=0.00415, ∆H 6=
A =15684, ∆HL=-229902, T 1

2

L=286.4,

∆HH=822285, T 1

2

H=310.3, and R=1.987 . Based on this set of parameter

values, the numbers of DevR larva(T) are plotted on a logarithmic scale

against temperature on a linear scale in Fig 3.5:

We assume that temperature within 24 hours is constant. So the daily devel-

opment rate of larvae is DevR larva(Ti)·24, where Ti is the daily temperature

on the ith day. Then the cumulative development time of larvae is:

CDT larva =

x∑

i=1

DevR larva(Ti) · 24 (3.5.4)

the larval stage is considered completed and immature mosquitoes enter the
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pupa stage, when CDT larva becomes greater than 1 + N(0, 0.1):

CDT larva > 1 + N(0, 0.1) (3.5.5)

where N is a normal distribution random variable. N(0, 0.1) helps introduce

mosquito variability into the larval stage. According to this inequality, we

can calculate the value of x , which is the total development time in days

for a larva.

We can choose three typical temperatures from Fig 3.5 to preliminarily val-

idate our choice of parameter values used in Equ 3.5.3. The three points

respectively are 36�, 26� and 16�. The validation is conducted as fol-

lows: let us assume the daily temperature is fixed at 36� each day, then

DevR larva(36) based on Equ 3.5.3 can be calculated, which is 0.011113704.

So the cumulative development time on a day with temperature of 36� -

CDT larva is 0.011113704∗24 = 0.266728896. Assuming the mosquito vari-

ability can be omitted here, based on Equ 3.5.5, the number of days for the

larval development when temperature is constant at 36� is ⌈1/0.266728896⌉ =

4(days). When the daily temperature is 26� or 14�, the whole calculation

is similar with that of 36�. The development time of larvae at 26� or

16� is 10 days or 24 days. There is no significant difference between the

three calculated estimates and the mean survival time lengths of Anopehles

gambiae larvae raised in the laboratory [51]. Their experiment results are

respectively 6.9, 13.5 and 25.5 in days .

3. The development time at the five adult stages:

Please see Table 3.1.
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3.5.3.3 Oviposition Rule

Since most Anopheles mosquitoes are crepuscular (active at dusk or dawn) or

nocturnal (active at night) [60], and they can fly for 1 to 4 hours continuously

at up to 1-2km/h [62], we assume that a gravid female is able to sample at most

3 habitats on a given day. If she still has some eggs left after sampling three

oviposition sites, she has to wait for another day to repeat the same sampling

process to lay the remaining eggs. As long as she does not lay all developed eggs

during this gonotrophic cycle, the process will continue until she dies.

The research results in [35, 36, 37, 38] show that high density of conspecific

larvae present in one habitat deters oviposition of gravid Anopheles females in

that particular habitat so that the impact from intra-specific competition and

overcrowding on this species is avoided. In addition, eggs and pupae need to take

up some space within one habitat, so these two populations also do affect the

number of eggs one female will lay into that habitat.

On the basis of these observations, we assign a behavior to gravid female agents

that when an ovipositing female randomly samples one habitat, she will determine

if this habitat is already overcrowded or not, and how many eggs she will lay in

it based on the equation 3.5.6:

O potential(i) = Omax · (1 −

∞∑
j=1

j · Nj + Negg + Npupa

K · i
) (3.5.6)

where Omax is the number of eggs a female develops during one gonotrophic

cycle that is drawn from a normal probability distribution with mean of 80 and

standard deviation of 12. i is the sampling coefficient, which is based on an

observation that after a female adult has sampled at least one habitat on a given
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night, she usually becomes not the same “picky” as before, and prefers to lay

already well-developed eggs as much as she can into the following found habitats.

K is the carrying capacity of the sampled habitat.
∞∑

j=1

j ·Nj is the one-day old larval

equivalent effective index that describes the effect of the whole larval population

in different larval age groups and explicitly presents an idea that older larvae have

higher impact on food and space competition than younger ones that live in the

same habitat. Negg is the egg effective index that is the population size of eggs.

Npupa is the pupa effective index that is the number of pupae. Both Negg and Npupa

actually reflect the idea adopted in our model that no food competition happens

during these two stages and their impact on other aquatic mosquitoes is from the

space taken up by them.

3.5.3.4 C++ Implementation of AGiLESim

The model is implemented in C++. There are five C++ files in all, which are

AGiLESim.cpp, Mosquito.cpp, Mosquito.h, Habiatat.cpp and Habitat.h. You can

download these files by:

svn co https://anosim.svn.sourceforge.net/svnroot/anosim/cpp

The biological model of AGiLESim shown in Fig 3.3 is interpreted as a state-

transition flow on which the main simulation program of AGiLESim.cpp works.

Fig 3.6 illustrates a simple example that how AGiLESim.cpp processes the whole

course that a female mosquito egg grows up to a mature mosquito, and finally lays

her very first clutch of eggs. In this example, we assume daily temperature is fixed

at 25� and this mosquito lives long enough to finish her very first oviposition. In

sum, at 25�, egg, larva and pupa stages respectively take 2, 10 and 2 days. We

can get these three values from the section 3.5.3.2. When the mosquito grows up
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Figure 3.6. A State Transition Flow When the Daily Temperature is
Fixed at 25�.

to an adult, IA, MS, BMS, BMD and G stages respectively need 2, 0, 0, 2 and

0 days. The data can be obtained easily from Fig 3.3.

The programming flow chart of the main simulation program of AGiLESim.cpp

is shown in Fig 3.7.

Fig 3.8 shows the overview of all modules and the data flows we are using in this

C++ simulation. There are six modules in AGiLESim that are processed in the

following order: simulation initialization, killing part adults based on daily mor-

tality rates, killing part immature mosquitoes in each habitat based on daily mor-

tality rates, updating the state of adults, updating the state of aquatic mosquitoes

and collecting data. The first model is only called once. However the later five

modules are processed within each day or each time step.
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Figure 3.9. The Mosquito Abundances in the Four Simulations with
Four Different Initial Adult Mosquito Populations.

3.6 Preliminary Results

3.6.1 The Initial Adult Mosquito Abundance

When the system is in equilibrium, the mosquito abundance is independent of

the initial number of adult mosquitoes injected into the system. In Fig 3.9, we

can see that whatever the initial numbers are: 1000, 4000, 8000, or 12000, the

mosquito abundance in the four simulations finally oscillate around the same area

when other conditions are the same.
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3.6.2 Pseudo-random Number Generator Seeds

In our C++ simulation, we use a famous pseudo-random number generator

called MT19937. It is a variant of the twisted generalized feedback shift-register

algorithm, and is brought forward by Makoto Matsumoto and Takuji Nishimura

and known as the “Mersenne Twister” generator [63]. As we all know, the

same pseudo-random number generator with different seeds can generate different

pseudo-random series. Therefore, we can get different sets of simulation data if

we specify different seeds in our simulation.

How much impact brought by different pseudo-random seeds on simulation

outputs will be? In order to answer this question, we run the C++ simulation 10

times with 10 different seeds, and plot ten curves of the female adult abundance

in Fig 3.10. From this figure, we can conclude that varying pseudo-random seeds

has little effect on the mosquito population.

3.6.3 The Proportion of Female Adults Older than 12 Days

When malaria parasites are ingested by a female mosquito adult, they usually

take 10 up to 21 days to develop within the mosquito. This development of

malaria parasites involves a series of steps: gametocytes ingested by Anopheles

mosquitoes develop into zygotes, ookinetes, oocysts and finally sporozoites [64].

When sporozoites are found in a mosquito, then this mosquito is ready for malaria

transmission to the next human host. This extrinsic incubation period at 27� was

found to be 12 days [54, 55]. The duration of the extrinsic incubation period is an

critical component of vectorial capacity that represents the malaria transmission

potential of a mosquito population [65]. In addition, the longer an infected female

mosquito survives, the more likely she survives the extrinsic incubation period
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Figure 3.11. The Proportion Change of Adult Females Older than 12
Days with Different ’a’ Values in DMR adult.

and transmits the malaria disease to its next hunted human host.

Based on the above biologic observations, we investigate the proportion of

female adults older than 12 days in our model. We find the main regulator of

the proportion of adult females older than 12 days over the whole adult female

population is the parameter-a in DMRadult (please see Egu 3.5.2). From Fig 3.11,

we can see that when we increase the value of a from 0.05 to 0.2, the ration

of female adults older than 12 days is reduced remarkably from around 37% to

around 4%.
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3.6.4 The Three Parameters in DMRadult

The function of DMRadult is as follows, and it has been described in detail in

3.5.3.1. Here, we want to present the sensitivity analysis for the three parameters:

a, b and s in DMRadult.

DMR adult =
a · eAge·b

1 + a·s
b

(eAge·b − 1)� a (the daily minimum mortality rate): in Fig 3.12, we can see that as a is

deceased from 0.2 down to 0.05 and other conditions are kept the same, the

adult mosquito population increases around 3 times when the system is in

equilibrium, which means a does have impact on the mosquito abundance.

However, we find a has much bigger effect on the older adult mosquitos than

the younger ones. From Fig 3.13, we observe that the number of mosquitoes

older than 12 days is increased to around 20 times. In other words, the

system that has smaller a in DMRadult has much more older mosquitoes

than that having a slightly larger a.� b (the exponential mortality): we lessen b from 0.05 to 0.04 and then to

0.03, the whole adult population slightly increases shown in Fig 3.14, and

has no distinct change when the system reaches equilibrium. Compared to

the impact of a, b affects the mosquito abundance little. In Fig 3.15, as

b decreases from 0.05 to 0.03, the age>=12 days adult population raises

around 40%.� s (the degree of mortality deceleration): similar to b, s has also smaller effect

than a on both the mosquito abundance and the population with age>=12

days. In Fig 3.16, we find that as s rises from 0.05 up to 0.2, the number of
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DMR adult.

The Age>=12 Days Adult Population with Different 'b' 
Values in DMR_adult

0

50

100

150

200

250

300

350

1 1937557391109127145163181199217235253271289307325343361

Day

N
um

be
r

b=0.05 b=0.04 b=0.03
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The Whole Adult Population with Different 's' Values in 
DMR_adult

0
300

600
900

1200
1500
1800

2100
2400

2700
3000

3300
3600

1 25 49 73 97121145169193217241265289313337361

Day

N
um

be
r

s=0.05 s=0.1 s=0.2

Figure 3.16. The Whole Adult Population with Different ’s’ Values in
DMR adult.

mosquitoes increases a little when the system becomes stable. The growth

is only about 10%. For the older mosquito adults, the influence from s is

also small, and the increase of the number of older than 12 days mosquitoes

is around 30% shown in Fig 3.17.

3.7 Conclusion

This chapter has presented our biological model of the Anopheles gambiae

mosquito life cycle and its C++ simulation. In this simulation, we treat female

and male mosquitoes at the aquatic and adult stages individually. Eight different

states during a female mosquito life have been explored in detail. In addition, our

model has captured the commonly observed proportion of female adults older than

12 days over the whole mosquito population. The dominant factor that controls
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Figure 3.17. The Age>=12 Days Adult Population with Different ’s’
Values in DMR adult.

this proportion has also been discussed here. The model takes into account the

impact from one of environment factors-daily temperature on the mosquito state

transition by increasing or decreasing some specific state durations. Finally, the

preliminary sensitivity analysis for the five parameters used in this simulation and

four preliminary results are represented in this part.
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