1. Suppose that $a, b \in \mathbb{C}$, and $|a| < r < |b|$. Show that

$$\int_{\gamma} \frac{dz}{(z-a)(z-b)} = \frac{2\pi i}{a-b},$$

where $\gamma(t) = re^{2\pi it}$, $t \in [0, 1]$.

2. Suppose that $f : \mathbb{C} \to \mathbb{C}$ is holomorphic, and there are constants $A, B, n > 0$ such that $|f(z)| \leq A|z|^n + B$ for all $z \in \mathbb{C}$. Prove that f is a polynomial.

3. Prove that if $N > 0$ is an integer and f is holomorphic on $D(0, 2)$ with

$$|f^{(N)}(0)| = N! \sup\{|f(z)| : |z| = 1\},$$

then $f(z) = cz^N$ for some $c \in \mathbb{C}$.

4. Suppose that $f, g : \mathbb{C} \to \mathbb{C}$ are holomorphic, and $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$. Prove that $f = cg$ for some $c \in \mathbb{C}$.

5. Suppose that f is holomorphic on the disk $D(0, 2)$. In this problem we will give two different proofs of Cauchy’s inequality in the form that there is a constant $C > 0$ such that

$$|f'(0)| \leq C \sup\{|f(z)| : |z| = 1\}.$$

(a) Prove the inequality using the maximum principle, by showing that for a suitable cutoff function $\eta : D(0, 1) \to \mathbb{R}$ vanishing on the boundary, and a suitable constant $D > 0$ we have

$$\Delta(\eta^2|f'|^2 + D|f|^2) \geq 0.$$

(b) Prove the inequality using Liouville’s theorem and an argument by contradiction: if no suitable C were to exist, then we would have a sequence of holomorphic functions f_k on $D(0, 2)$ with $\sup\{|f_k(z)| : |z| = 1\} \leq 1$ and $|f_k'(0)| = k$. Use these f_k to construct a bounded, non-constant holomorphic function on \mathbb{C}.

6. Suppose that $f_n : \mathbb{C} \to \mathbb{C}$ are holomorphic functions with only real zeros, and that $f_n \to f$ locally uniformly on \mathbb{C}. Show that f has only real zeros, unless f is identically zero.

7. Suppose that $f(z) = \sum_{n \geq 0} c_n z^n$ defines a holomorphic function on $D(0, 1)$, such that $f(z) \in \mathbb{R}$ for all $z \in D(0, 1) \cap \mathbb{R}$. Show that $c_n \in \mathbb{R}$ for all n.

1