Homework 4, due 9/23

1. Let \(f : \mathbb{C} \to \mathbb{C} \) be holomorphic, and not constant. Show that \(f(\mathbb{C}) \) is dense in \(\mathbb{C} \).

2. Let \(f \) be a meromorphic function on \(\mathbb{C} \).

 (i) Suppose that there exist \(k, C > 0 \) such that \(|f(z)| \leq C|z|^k \) for all \(|z| > C \). Prove that \(f \) is a rational function, i.e. there are polynomials \(p, q \) such that \(f = p/q \).

 (ii) Suppose that the function \(g(w) = f(1/w) \) is also meromorphic on \(\mathbb{C} \). Prove that \(f \) is a rational function.

3. Find the Laurent series of the function

\[
f(z) = \frac{1}{1-z^2},
\]

around the point \(z = -1 \). Where does the series converge?

4. Let \(f : \mathbb{C} \setminus \{0\} \to \mathbb{C} \) be the meromorphic function defined by

\[
f(z) = \frac{1 - \cos z}{z^5}.
\]

Find \(\text{ord}_0(f) \).

5. Prove that the function \(f(z) = \sin(1/z) \) has an essential singularity at \(z = 0 \).

6. Let \(f : D(0, 1) \to \mathbb{C} \) be holomorphic such that \(f(0) = 0 \). Show that there is an integer \(m \), an \(r > 0 \), and a holomorphic \(g : D(0, r) \to \mathbb{C} \) with \(g(0) \neq 0 \) such that for \(z \in D(0, r) \) we have

\[
f(z) = \left[zg(z)\right]^m.
\]

7. Consider the improper integral

\[
I = \lim_{R \to \infty} \int_0^R e^{ix^2} \, dx
\]

on the positive real axis. Prove that

\[
I = \lim_{R \to \infty} \int_{\gamma_R} e^{iz^2} \, dz,
\]

where \(\gamma_R \) is the line segment \(\gamma_R(t) = te^{i\theta} \) for any \(\theta \in (0, \pi/2) \), with \(t \in [0, R] \). Deduce that

\[
I = e^{\pi i/4} \int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2} e^{\pi i/4}.
\]