Homework 9, due 12/5
Only your four best solutions will count towards your grade.

1. Suppose that \(\alpha \) is a \((1,0)\)-form on a compact Riemann surface \(X \).
 (a) If in a local holomorphic chart \(\alpha = \alpha_z dz \), define \(\bar{\alpha} = \alpha_{\bar{z}} d\bar{z} \). Show that \(\bar{\alpha} \) defines a \((0,1)\)-form on \(X \), i.e. check that the coordinate representations of \(\bar{\alpha} \) satisfy the right compatibility condition.
 (b) Show that
 \[
 \int_X i^2 \alpha \wedge \bar{\alpha} \geq 0,
 \]
 with equality only if \(\alpha = 0 \).
 (c) Suppose that \(f : X \to \mathbb{C} \) satisfies \(\partial \bar{\partial} f = 0 \) (and \(X \) is compact). Show that \(f \) is constant, by considering the integral of \(\partial f \wedge \bar{\partial} f \) and using Stokes' Theorem.

2. Let \(X \) be a compact Riemann surface, and for any \((1,0)\)-form \(\theta \in \Omega^{1,0}_X \), define the norm \(\| \theta \| \) by
 \[
 \| \theta \|^2 = i \int_X \theta \wedge \bar{\theta}.
 \]
 From the previous question we know that this is a non-negative real number, which vanishes only if \(\theta = 0 \). Denote by \([\theta]\) the equivalence class of \(\theta \) in \(\Omega^{1,0}_X/(\text{im } \partial) \).
 Show that if \(\alpha \in [\theta] \) has minimal norm among the elements in the class \([\theta]\), then \(\bar{\partial} \alpha = 0 \), i.e. \(\alpha \) is a holomorphic one-form. (Note that this gives another approach to proving the isomorphism \(H^{0,1} = \overline{H^{1,0}} \) from class.)

3. Let \(\alpha \) be a \(2\)-form supported in a chart \(U \) on a Riemann surface. Suppose that \(z, w \) are two local coordinates on \(U \), and \(\alpha = f(z)dz \wedge d\bar{z} \) and \(\alpha = g(w)dw \wedge d\bar{w} \) are the expressions of \(\alpha \) in these coordinates. Show that the integral \(\int_U \alpha \) defined in class is independent of the coordinate representation chosen for \(\alpha \).

4. (a) Let \(\alpha \) be any meromorphic one-form on \(\mathbb{P}^1 \). Show that
 \[
 \sum_{p \in \mathbb{P}^1} \text{ord}_p \alpha = -2.
 \]
 Hint: show that \(\alpha = f dz \) for a meromorphic function \(f \).
 (b) Let \(p_1, \ldots, p_k \in \mathbb{P}^1 \), and \(a_1, \ldots, a_k \in \mathbb{Z} \) satisfy \(\sum_i a_i = -2 \). Can you find a meromorphic one-form \(\alpha \) on \(\mathbb{P}^1 \) such that \(\text{ord}_{p_i} \alpha = a_i \) for each \(i \), and \(\text{ord}_p \alpha = 0 \) for all other \(p \)?

5. Consider the one-form \(\alpha = \bar{z} dz \) on \(\mathbb{C} \).
 (a) Does there exist a function \(f : \mathbb{C} \to \mathbb{C} \) such that \(\alpha = df \)?
(b) Does there exist $f : \mathbb{C} \to \mathbb{C}$ such that $\alpha = \partial f$?

6. In class we showed that $\dim H^{1,0}_X \leq g$, where g is the genus of the compact Riemann surface X. Let

$$H^1(X, \mathbb{R}) = \frac{\ker(d : \Omega^1(X) \to \Omega^2(X))}{d\Omega^0(X)}$$

denote the De Rham cohomology of X. Show that $\dim_{\mathbb{R}} H^{1,0}_X = \dim_{\mathbb{R}} H^1(X, \mathbb{R})$ by showing that the map $H^{1,0}_X \to H^1(X, \mathbb{R})$ given by $\alpha \mapsto \alpha + \bar{\alpha}$ is a (real linear) isomorphism. This can be used to show that $\dim H^{1,0}_X = g$.

2