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Question. When can a given isomorphism H∗(X;Z) → H∗(Y ;Z) be realized by a
continuous map X → Y ? This question is quite difficult, so instead we can ask the following:

When can a given isomorphism f : H∗(X;Q)
∼=→ H∗(Y ;Q) of rational cohomology alge-

bras be realized by a rational homotopy equivalence between X and Y ? Note here that a
rational equivalence is a zig-zag of “elementary equivalences”, i.e. maps inducing isomor-
phisms in rational cohomology.

A spaceX is rationally nilpotent if its Sullivan minimal modelAX = (ΛV, d) ' Ω∗poly(S•(X))
has only finitely many generators in each degree. Here, ΛV is the free commutative graded
algebra on V . The relevance of this definition is seen through the following example and
main theorem.

Example. Any nilpotent path-connected space with finite dimensional rational homol-
ogy in each degree is rationally nilpotent. A space X is called nilpotent if π1(X) is a nilpotent
group and if π1(X) acts nilpotently on the higher homotopy groups of X. In particular, any
simply-connected space with finite-dimensional rational homology in each degree is nilpotent.

Theorem 1.3. Assume X, Y are rationally nilpotent. Then the isomorphism f :
H∗(X;Q) → H∗(Y ;Q) can be realized by a rational homotopy equivalence if and only if
the obstructions On(f) all vanish.

Note that if the Sullivan minimal models AX ∼= AY are isomorphic, then X and Y
are rationally homotopy equivalent. The theorem says that showing the vanishing of the
obstructions On(f) is another way of exhibiting this rational homotopy equivalence. We’ll
conclude with an example of why this would be desirable, and then leave the applications
to formality and CDGA’s over field extensions (covered in Section 6 of the paper) for the
exercises.

By the chain of Quillen equivalences discussed in PJ’s minicourse, we can rephrase
everything in terms of homotopy equivalences (zig-zags of maps inducing isos in homol-
ogy) between CDGA’s. So, suppose we have CDGA’s A and B and a fixed isomorphism

f : H(A)
∼=→ H(B), and assume further that H(A) is connected and has finite type.

Theorem 5.10. The isomorphism f can be realized by a homotopy equivalence if and
only if the sequence On(f) vanish.

Using the Quillen equivalences from the minicourse, it is not hard to show that Theorem
5.10 implies Theorem 1.3.

We begin with some preliminary definitions. A connected Koszul-Sullivan complex is a
CDGA of the form (ΛX,D) where X = Σp>0X

p is a strictly positive graded space and D



satisfies the nilpotence condition that there is a homogeneous basis {xα}α∈ζ for X where ζ is
a well-ordered set, such that Dxα is a polynomial in the xβ with β < α. A Koszul-Sullivan
complex is minimal if D(X) ⊂ (Λ+X) · (Λ+X).

The path-complex of a connected K-S complex (ΛX,D), denoted by (ΛX,D)I , is the
CDGA (ΛX ⊗ ΛX ⊗ ΛX̂,D) where

1. D|ΛX = D

2. X is the graded space defined by X
p

= Xp+1

3. X̂ is a graded space isomorphic with X

4. Dx = x̂ and Dx̂ = 0.

These conditions uniquely determineD. A homotopy between CDGA maps φ0, φ1 : (ΛX,D)→
(A, dA) is a map Φ : (ΛX,D)I → (A, dA) satisfying the expected relations.

Using this definition, one can prove that given a quasi-isomorphism φ : (A, dA)→ (B, dB)
and a map ψ : (ΛX,D)→ (B, dB) with (ΛX,D) connected and nilpotent, then there exists
a unique (up to homotopy) homomorphism χ : (ΛX,D)→ (A, dA) such that φ ◦ χ ' ψ.

We say that a CDGA (A, dA) is c-connected if H(A) is connected. We have already
discussed minimal Sullivan models in previous weeks; the following theorem says that if in
addition the CDGA you start with is c-connected, then the resulting minimal model can be
required to be nilpotent.

Theorem 2.6. Let (A, dA) be a c-connected CDGA. Then there is a minimal connected
Koszul-Sullivan complex (MA, δA) and a homomorphism mA : (MA, δA)→ (A, dA) such that
m∗A is an isomorphism. The resulting complex is unique up to homotopy.

In particular, a homomorphism between minimal connected K-S complexes is an isomor-
phism if and only if it induces an isomorphism of cohomology.

We say that mA : (MA, δA)→ (A, dA) is the minimal model for (A, dA). A special homo-
topy equivalence between CDGA’s (A, dA) and (B, dB) is a homotopy equivalence between
their minimal models MA and MB; such an equivalence gives rise to a homotopy equiva-
lence between A and B. Conversely, given a homotopy equivalence between A and B, one
can define an obvious special homotopy equivalence between their minimal models. This is
summarized in the following propositions.

Propositions 2.10, 2.11. An isomorphism f : H(A)
∼=→ H(B) can be realized by a

homotopy equivalence if and only if there is an isomorphism φ : (MA, δA)
∼=→ (MB, δB) such

that f = m∗B ◦ φ∗ ◦ (m∗A)−1.

1. If f : H(A) → H(B) and g : H(B) → H(c) are realizable isomorphisms, then g ◦ f
and f−1 are realizable.



2. If G(A, dA) is the group of realizable automorphisms of H(A) and f : H(A)
∼=→ H(B) is

realizable, then the group isomorphism G(A, dA)
∼=→ G(B, dB) is given by g 7→ f◦g◦f−1.

We now turn to the first key construction of the paper. Beginning with a connected CGA
H, one obtains a bigraded model as follows. Regard H as a CDGA with trivial differential;
by the above, it has a minimal model

ρ : (ΛZ, d)→ (H, 0).

We’ll explicitly construct this minimal model by defining a sequence of graded spaces Z0, Z1, . . .
such that Z = Σ∞n=0Zn. Denote by Z(n) = Z0 ⊕ · · · ⊕ Zn. We’ll then define ρ and d so that

1. ρ : ΛZ0 → H is surjective

2. ρ∗ : H0(ΛZ(1), d)
∼=→ H

3. ρ∗ : H0(ΛZ(n), d)
∼=→ H and Hi(ΛZ(n), d) = 0 for 1 ≤ i < n and n ≥ 2

We’ll also write Zp
n = Z−n,p+n and (ΛZ)pn = (ΛZ)−n,p+n.

Construction. The space Z0 = H+/(H+ · H+) is the space of indecomposables for
H. Set d = 0 in Z0, and define ρ : ΛZ0 → H so its restriction to Z0 splits the projection
H+ → Z0. These are the “generators” for H. Then ρ is surjective with kernel K satisfying
K0 = K1 = 0.

The space Z1 = K/(K · Λ+Z0)[1], i.e. Zp
1 = (K/K · Λ+Z0)p+1. These are the “relations”

for H. Since K0 = K1 = 0, we have Z1 = Σp≥1Z
p
1 . Extend d to Z1 by requiring that it be a

linear map Z1 → K splitting the projection. Then d is homogeneous of lower degree −1 in
ΛZ(1). Extend ρ to be zero on Z1.

In general, the space Zn is defined to kill off Hn. If we’ve constructed Zn already, define
Zn+1 by

Zp
n+1 = [Hn(ΛZ(n), d)/(Hn(ΛZ(n), d) ·H+

0 (ΛZ(n), d))]p+1,

then extend d so that d : Zn+1 → (ΩZ(n))n∩kerd splits the projection onto Zn+1 and extend
ρ to be zero on Zn+1.

Proposition 3.4. The CDGA (ΛZ, d) satisfies

1. ρ∗ : H0(ΛZ, d)
∼=→ H

2. H≥1(ΛZ, d) = 0

3. (ΛZ, d)
ρ→ (H, 0) is a minimal model.

It is the unique bigraded algebra with differential of “lower degree” −1 satisfying these
properties up to isomorphism.



The proof is by induction on n and from the definition, so the interested reader is referred
to the paper. It’s interesting to note that

· · · d→ (ΛZ)n+1
d→ (ΛZ)n

d→ · · · d→ (ΛZ)0 = ΛZ0
ρ→ H

is a resolution of H by free ΛZ0-modules, so it can be used to calculate TorΛZ0(H,−).

Exercise. Let H = Λ(x1, . . . , x4)/I where |x1| = |x2| = |x3| = 3 and |x4| = 5 and
I = 〈x1x2, x1x3x4, x2x3x4〉, and consider H as an DGA with trivial differential (H, 0).

Determine bases and differentials for Z0, Z1, Z2.

Remark. IfH has finite type, then one can compute the Poincare series forH,
∑∞

p=0(dimHp)tp

using the integers dimZ2
n. We’ll leave the derivation of this formula to the exercises.

We now construct the canonical filtered model for a c-connected CDGA (A, dA) by per-

turbing the bigraded model (ΛZ, d)
ρ→ (H(A), 0). Define an increasing filtration of ΛZ

by
Fn(ΛZ) = Σm≤n(ΛZ)m.

A linear map φ : ΛZ → ΛZ is filtration decreasing if

φ(Fn(ΛZ)) ⊂ Fn−1(ΛZ)

for each n. If φ is a derivation, this is the same as saying that

φ(Zn) ⊂ Fn−1(ΛZ).

The idea is to model (A, dA) by a CDGA (ΛZ,D) such that

(D − d) : Zn → Fn−2(ΛZ)

where D is a perturbation of d in that D = d1 + d2 + . . . where di|Zn ⊂ (ΛZ)n−i. In other
words, a perturbation is a map which sends elements to elements of strictly lower filtration.

Example. In the previous exercise, one shows that Z2 has a basis {z1, . . . , z10} with
differentials dz1 = y1x1 and dzi = else for i = 2, . . . , 10. Let’s perturb (ΛZ, d) to a CDGA
(ΛZ,D) so that D − d : Zn → Fn−2(ΛZ). One is forced to define D = d on Z0 and Z1,
but on Z2 one defines Dz1 = y1x1 + x3x4 and Dzi = dzi for i = 2, . . . , 10. Then D2 = 0
on ΛZ(2). Induction shows D can be extended to all of ΛZ. In particular, one shows that
Dw = z1x1 − y2 for some w ∈ Z3, so that (ΛZ,D) is not minimal and cannot be isomorphic
to (ΛZ, d).

Theorem 4.4. Let (A, dA) be a c-connected CDGA and let ρ : (ΛZ, d) → (H(A), 0)
be the bigraded model for H(A). Then there is a CDGA (ΛZ,D) and a homomorphism
π : (ΛZ,D)→ (A, dA) such that

1. (D − d) : Zn → Fn−2(ΛZ), n ≥ 0



2. [πz] = ρz for z ∈ ΛZ0

3. π∗ is an isomorphism

Moreover, suppose π′ : (ΛZ,D′) → (A, dA) satisfies the same conditions. Then there is an

isomorphism φ : (ΛZ,D)
∼=→ (ΛZ,D′) such that

1. (φ− ι) is filtration decreasing

2. π′φ ' π : (ΛZ,D)→ (A, dA).

Sketch of proof. (Existence) One constructs D and π inductively on Z0, Z1, . . . as follows.
Fix a splitting η : H(A)→ ΛZ0 of ρ. For Z0, Z1, Z2, the definitions of D and π are forced by
the choice of splitting. Assuming one has extended the definitions to ΛZ(n) for some n ≥ 2,
the (n+1)-case uses some clever definitions and linear algebra, so it’s best read in the paper.

(Uniqueness) One must write an explicit homotopy between π : (ΛZ,D) → (A, dA) and
π′ : (ΛZ,D′) → (A, dA). This involves a rather long induction argument, but as above, one
makes the correct definitions at each step so that the correct notion of uniqueness is satisfied
at each step. �

Recap. Starting with a CDGA (A, dA), we view its homology H(A) as a CDGA

(H(A), 0), then produce a bigraded model (ΛZ, d)
ρ→ (H(A), 0), and finally we perturb

the bigraded model to obtain an isomorphic bigraded model (ΛZ,D)
π→ (A, dA). The last

bigraded model is called the filtered model for (A, dA).

Obstruction theory. Fix an isomorphism of graded algebras

f : H(A)→ H(B)

where (A, dA) and (B, dB) are c-connected CDGA’s. Let ρA : (ΛZ, d) → (H(A), 0) be the
bigraded model. By uniqueness, the composition ρB = f ◦ ρA : (ΛZ, d) → (H(B), 0) is the
bigraded model for H(B). Fix linear maps ηA : H(A)→ ΛZ0 and ηB : H(B)→ ΛZ0 so that
composition with the bigraded model structure maps are the inclusion.

Perturb both bigraded models as above to obtain

πA : (ΛZ,DA)→ (A, dA)

πB : (ΛZ,DB)→ (B, dB)

Theorem 5.3. The map f can be realized by a homotopy equivalence if and only if
there is an isomorphism φ : (ΛZ,DA)→ (ΛZ,DB) such that φ− ι decreases filtrations.

Proof. (⇐) Given such a φ, the sequence πA, φ, πB is a special homotopy equivalence, so
by remarks from above, gives rise to an actual realization of f . To see that the sequence is
a special homotopy equivalence, proceed as follows. If α ∈ H(A), then ηAα ∈ ΛZ0 satisfies
[πAηAα] = α by the construction of Z0. Since φΛZ0 = id, we have

π∗B ◦ φ∗ ◦ (π∗A)−1(α) = [πB(ηAα)] = ρBηAα = fρaηAα = f(α)



so the sequence is indeed a special homotopy equivalence.
(⇒) If f can be realized by a homotopy equivalence, the above remarks imply there is

an isomorphism
ψ : (MA, δA)→ (MB, δB)

between the associated minimal models such that m∗B ◦ ψ∗ ◦ (m∗A)−1 = f . By uniqueness of
nilpotent models, there is a homomorphism

γ : (ΛZ,DA)→ (MA, δA)

such that mA ◦ γ ' πA. One can verify that mB ◦ ψ ◦ γ : (ΛZ,DA) → (B, dB) satisfies the

conditions of Theorem 4.4, so there is an isomorphism φ : (ΛZ,DA)
∼=→ (ΛZ,DB) such that

φ− ι decreases filtrations. �

Definition. The isomorphism f : H(A)
∼=→ H(B) is n-realizable if there is an isomor-

phism φ : (ΛZ(n+1), DA)→ (ΛZ(n+1), DB) such that φ− ι decreases filtrations. In this case,
φ is called an n-realizer for f .

If φ is an n-realizer for f , the degree 1 linear map

o(φ) : Zn+2 → H(B)

z 7→ [πBφDAz]

is called the obstruction element determined by φ. The set of these is denoted

On+1(f) = {o(φ) : φ is an n-realizer for f}.

It’s clear that if f is realizable, then it is n-realizable for all n. We’ll address the converse
after we finish setting up the obstruction theory. Note that

On+1(f) ⊂ Hom1(Zn+2, H(B))

i.e. degree 1 maps from Zn+2 to H(B). Let

Mn ⊂ Der(ΛZ(n))

be the space of filtration decreasing derivations θ of degree zero in ΛZ(n) which commute
with the filtered model differential DB, i.e. DBθ = θDB. Define a linear map

γ : Mn → Hom1(Zn+1, H(B))

γ(θ)(z) = [πBθDBz].

With all of this in place, we define the obstructions as follows:

Proposition 5.6 Suppose φ is some (n− 1)-realizer for f . Then

On(f) = o(φ) + γ(Mn).



Proof. Note that any other (n − 1)-realizer φ′ for f is related to φ by some automor-
phism ψ of (ΛZ(n), DB) such that ψ − ι decreases filtration. One can verify that any such
automorphism is of the form ψ = eθ =

∑∞
p=0(1/p!)θp where θ ∈Mn, so the (n− 1)-realizers

of f are the isomorphisms of the form eθφ, θ ∈Mn.
Therefore On(f) = {o(eθφ) : θ ∈Mn} and we need to show

o(eθφ) = o(φ) + γ(θ).

This is somewhat involved, but is not hard to follow and is left to the interested reader. �

Some consequences of the “involved part” of the previous proof are the following results:

Proposition 5.7, Corollary 5.8. An (n − 1)-realizer φ for f extends to an n-realizer
if and only if o(φ) = 0. In particular, if f is (n− 1)-realizable, then f is n-realizable if and
only if

On(f) = γ(Mn).

Therefore On(f) may be regarded as a single element in Hom1(Zn+1, H(B))/γ(Mn), and
it’s this single element that we think of as the obstruction. We can now address the converse:

Theorem 5.10. If H(A) has finite type, then f can be realized by a homotopy equiva-
lence if and only if all the obstruction classes On(f) vanish.

Theorem 5.15. Assume Hp(A) = 0 for 1 ≤ p ≤ l and for p > m. Then f is realizable
by a homotopy equivalence if and only if

On(f) = 0, 1 ≤ n ≤ m− 2

l
− 2.

Proof. The forward implication is obvious from Theorem 5.3, so we need to prove the
reverse implication. Suppose On(f) = 0 for n ≤ (m− 2)/l − 2, let N be the largest integer
n, and let φ be an N -realizer for f . We have

O(φ) ∈ Hom1(ZN+2, H(B)).

One can show by induction on k that if Hp(A) = 0 for 1 ≤ p ≤ l, then Zp
k = 0 for

1 ≤ p ≤ (k + 1)l. Since N + 1 > (m − 2)/l − 2, Hp(A) ∼= Hp(B) = 0 for p > m, we have
Hom1(ZN+2, H(B)) = 0. Therefore o(φ) = 0 and φ extends to an (N + 1)-realizer φ1 for f .

Repeating this process gives a sequence of (N+k)-realizers φk for f , and one then defines
φ : (ΛZ,DA)→ (ΛZ, dB) by setting φ(u) = φp(u) for u ∈ ΛZ(N+p+1). This satisfies Theorem
5.3, so f is realizable. �

The proof of Theorem 5.10 is similar; one cleverly chooses a sequence of integers m1 ≤
m2 ≤ · · · and the sequence of mn-realizers φn piece together as above into an isomorphism
satisfying Theorem 5.3, and therefore give rise to a homotopy equivalence.


