Rational Homotopy Theory Seminar
 Week 11: Obstruction theory for rational homotopy equivalences
 J.D. Quigley

Reference. Halperin-Stasheff "Obstructions to homotopy equivalences"
Question. When can a given isomorphism $H_{*}(X ; \mathbb{Z}) \rightarrow H_{*}(Y ; \mathbb{Z})$ be realized by a continuous map $X \rightarrow Y$? This question is quite difficult, so instead we can ask the following:

When can a given isomorphism $f: H_{*}(X ; \mathbb{Q}) \stackrel{\cong}{\rightrightarrows} H^{*}(Y ; \mathbb{Q})$ of rational cohomology algebras be realized by a rational homotopy equivalence between X and Y ? Note here that a rational equivalence is a zig-zag of "elementary equivalences", i.e. maps inducing isomorphisms in rational cohomology.

A space X is rationally nilpotent if its Sullivan minimal model $A_{X}=(\Lambda V, d) \simeq \Omega_{\text {poly }}^{*}(S \bullet(X))$ has only finitely many generators in each degree. Here, ΛV is the free commutative graded algebra on V. The relevance of this definition is seen through the following example and main theorem.

Example. Any nilpotent path-connected space with finite dimensional rational homology in each degree is rationally nilpotent. A space X is called nilpotent if $\pi_{1}(X)$ is a nilpotent group and if $\pi_{1}(X)$ acts nilpotently on the higher homotopy groups of X. In particular, any simply-connected space with finite-dimensional rational homology in each degree is nilpotent.

Theorem 1.3. Assume X, Y are rationally nilpotent. Then the isomorphism f : $H^{*}(X ; \mathbb{Q}) \rightarrow H^{*}(Y ; \mathbb{Q})$ can be realized by a rational homotopy equivalence if and only if the obstructions $O_{n}(f)$ all vanish.

Note that if the Sullivan minimal models $A_{X} \cong A_{Y}$ are isomorphic, then X and Y are rationally homotopy equivalent. The theorem says that showing the vanishing of the obstructions $O_{n}(f)$ is another way of exhibiting this rational homotopy equivalence. We'll conclude with an example of why this would be desirable, and then leave the applications to formality and CDGA's over field extensions (covered in Section 6 of the paper) for the exercises.

By the chain of Quillen equivalences discussed in PJ's minicourse, we can rephrase everything in terms of homotopy equivalences (zig-zags of maps inducing isos in homology) between CDGA's. So, suppose we have CDGA's A and B and a fixed isomorphism $f: H(A) \xrightarrow{\cong} H(B)$, and assume further that $H(A)$ is connected and has finite type.

Theorem 5.10. The isomorphism f can be realized by a homotopy equivalence if and only if the sequence $O_{n}(f)$ vanish.

Using the Quillen equivalences from the minicourse, it is not hard to show that Theorem 5.10 implies Theorem 1.3.

We begin with some preliminary definitions. A connected Koszul-Sullivan complex is a CDGA of the form $(\Lambda X, D)$ where $X=\Sigma_{p>0} X^{p}$ is a strictly positive graded space and D
satisfies the nilpotence condition that there is a homogeneous basis $\left\{x_{\alpha}\right\}_{\alpha \in \zeta}$ for X where ζ is a well-ordered set, such that $D x_{\alpha}$ is a polynomial in the x_{β} with $\beta<\alpha$. A Koszul-Sullivan complex is minimal if $D(X) \subset\left(\Lambda^{+} X\right) \cdot\left(\Lambda^{+} X\right)$.

The path-complex of a connected K-S complex $(\Lambda X, D)$, denoted by $(\Lambda X, D)^{I}$, is the $\operatorname{CDGA}(\Lambda X \otimes \Lambda \bar{X} \otimes \Lambda \hat{X}, \bar{D})$ where

1. $\left.\bar{D}\right|_{\Lambda X}=D$
2. \bar{X} is the graded space defined by $\bar{X}^{p}=X^{p+1}$
3. \hat{X} is a graded space isomorphic with X
4. $\bar{D} \bar{x}=\hat{x}$ and $\bar{D} \hat{x}=0$.

These conditions uniquely determine \bar{D}. A homotopy between CDGA maps $\phi_{0}, \phi_{1}:(\Lambda X, D) \rightarrow$ $\left(A, d_{A}\right)$ is a map $\Phi:(\Lambda X, D)^{I} \rightarrow\left(A, d_{A}\right)$ satisfying the expected relations.

Using this definition, one can prove that given a quasi-isomorphism $\phi:\left(A, d_{A}\right) \rightarrow\left(B, d_{B}\right)$ and a map $\psi:(\Lambda X, D) \rightarrow\left(B, d_{B}\right)$ with $(\Lambda X, D)$ connected and nilpotent, then there exists a unique (up to homotopy) homomorphism $\chi:(\Lambda X, D) \rightarrow\left(A, d_{A}\right)$ such that $\phi \circ \chi \simeq \psi$.

We say that a CDGA $\left(A, d_{A}\right)$ is c-connected if $H(A)$ is connected. We have already discussed minimal Sullivan models in previous weeks; the following theorem says that if in addition the CDGA you start with is c-connected, then the resulting minimal model can be required to be nilpotent.

Theorem 2.6. Let $\left(A, d_{A}\right)$ be a c-connected CDGA. Then there is a minimal connected Koszul-Sullivan complex $\left(M_{A}, \delta_{A}\right)$ and a homomorphism $m_{A}:\left(M_{A}, \delta_{A}\right) \rightarrow\left(A, d_{A}\right)$ such that m_{A}^{*} is an isomorphism. The resulting complex is unique up to homotopy.

In particular, a homomorphism between minimal connected K -S complexes is an isomorphism if and only if it induces an isomorphism of cohomology.

We say that $m_{A}:\left(M_{A}, \delta_{A}\right) \rightarrow\left(A, d_{A}\right)$ is the minimal model for $\left(A, d_{A}\right)$. A special homotopy equivalence between CDGA's $\left(A, d_{A}\right)$ and $\left(B, d_{B}\right)$ is a homotopy equivalence between their minimal models M_{A} and M_{B}; such an equivalence gives rise to a homotopy equivalence between A and B. Conversely, given a homotopy equivalence between A and B, one can define an obvious special homotopy equivalence between their minimal models. This is summarized in the following propositions.

Propositions 2.10, 2.11. An isomorphism $f: H(A) \xlongequal{\cong} H(B)$ can be realized by a homotopy equivalence if and only if there is an isomorphism $\phi:\left(M_{A}, \delta_{A}\right) \xlongequal{\cong}\left(M_{B}, \delta_{B}\right)$ such that $f=m_{B}^{*} \circ \phi^{*} \circ\left(m_{A}^{*}\right)^{-1}$.

1. If $f: H(A) \rightarrow H(B)$ and $g: H(B) \rightarrow H(c)$ are realizable isomorphisms, then $g \circ f$ and f^{-1} are realizable.
2. If $G\left(A, d_{A}\right)$ is the group of realizable automorphisms of $H(A)$ and $f: H(A) \xlongequal{\cong} H(B)$ is realizable, then the group isomorphism $G\left(A, d_{A}\right) \stackrel{\cong}{\rightrightarrows} G\left(B, d_{B}\right)$ is given by $g \mapsto f \circ g \circ f^{-1}$.

We now turn to the first key construction of the paper. Beginning with a connected CGA H, one obtains a bigraded model as follows. Regard H as a CDGA with trivial differential; by the above, it has a minimal model

$$
\rho:(\Lambda Z, d) \rightarrow(H, 0)
$$

We'll explicitly construct this minimal model by defining a sequence of graded spaces Z_{0}, Z_{1}, \ldots such that $Z=\sum_{n=0}^{\infty} Z_{n}$. Denote by $Z_{(n)}=Z_{0} \oplus \cdots \oplus Z_{n}$. We'll then define ρ and d so that

1. $\rho: \Lambda Z_{0} \rightarrow H$ is surjective
2. $\rho^{*}: H_{0}\left(\Lambda Z_{(1)}, d\right) \xrightarrow{\cong} H$
3. $\rho^{*}: H_{0}\left(\Lambda Z_{(n)}, d\right) \xrightarrow{\cong} H$ and $H_{i}\left(\Lambda Z_{(n)}, d\right)=0$ for $1 \leq i<n$ and $n \geq 2$

We'll also write $Z_{n}^{p}=Z^{-n, p+n}$ and $(\Lambda Z)_{n}^{p}=(\Lambda Z)^{-n, p+n}$.
Construction. The space $Z_{0}=H^{+} /\left(H^{+} \cdot H^{+}\right)$is the space of indecomposables for H. Set $d=0$ in Z_{0}, and define $\rho: \Lambda Z_{0} \rightarrow H$ so its restriction to Z_{0} splits the projection $H^{+} \rightarrow Z_{0}$. These are the "generators" for H. Then ρ is surjective with kernel K satisfying $K^{0}=K^{1}=0$.

The space $Z_{1}=K /\left(K \cdot \Lambda^{+} Z_{0}\right)[1]$, i.e. $Z_{1}^{p}=\left(K / K \cdot \Lambda^{+} Z_{0}\right)^{p+1}$. These are the "relations" for H. Since $K^{0}=K^{1}=0$, we have $Z_{1}=\Sigma_{p \geq 1} Z_{1}^{p}$. Extend d to Z_{1} by requiring that it be a linear map $Z_{1} \rightarrow K$ splitting the projection. Then d is homogeneous of lower degree -1 in $\Lambda Z_{(1)}$. Extend ρ to be zero on Z_{1}.

In general, the space Z_{n} is defined to kill off H_{n}. If we've constructed Z_{n} already, define Z_{n+1} by

$$
Z_{n+1}^{p}=\left[H_{n}\left(\Lambda Z_{(n)}, d\right) /\left(H_{n}\left(\Lambda Z_{(n)}, d\right) \cdot H_{0}^{+}\left(\Lambda Z_{(n)}, d\right)\right)\right]^{p+1},
$$

then extend d so that $d: Z_{n+1} \rightarrow\left(\Omega Z_{(n)}\right)_{n} \cap$ kerd splits the projection onto Z_{n+1} and extend ρ to be zero on Z_{n+1}.

Proposition 3.4. The $\operatorname{CDGA}(\Lambda Z, d)$ satisfies

1. $\rho^{*}: H_{0}(\Lambda Z, d) \xrightarrow{\cong} H$
2. $H_{\geq 1}(\Lambda Z, d)=0$
3. $(\Lambda Z, d) \xrightarrow{\rho}(H, 0)$ is a minimal model.

It is the unique bigraded algebra with differential of "lower degree" -1 satisfying these properties up to isomorphism.

The proof is by induction on n and from the definition, so the interested reader is referred to the paper. It's interesting to note that

$$
\cdots \xrightarrow{d}(\Lambda Z)_{n+1} \xrightarrow{d}(\Lambda Z)_{n} \xrightarrow{d} \cdots \xrightarrow{d}(\Lambda Z)_{0}=\Lambda Z_{0} \xrightarrow{\rho} H
$$

is a resolution of H by free ΛZ_{0}-modules, so it can be used to calculate $\operatorname{Tor}_{\Lambda Z_{0}}(H,-)$.
Exercise. Let $H=\Lambda\left(x_{1}, \ldots, x_{4}\right) / I$ where $\left|x_{1}\right|=\left|x_{2}\right|=\left|x_{3}\right|=3$ and $\left|x_{4}\right|=5$ and $I=\left\langle x_{1} x_{2}, x_{1} x_{3} x_{4}, x_{2} x_{3} x_{4}\right\rangle$, and consider H as an DGA with trivial differential $(H, 0)$.

Determine bases and differentials for Z_{0}, Z_{1}, Z_{2}.
Remark. If H has finite type, then one can compute the Poincare series for $H, \sum_{p=0}^{\infty}\left(d i m H^{p}\right) t^{p}$ using the integers $\operatorname{dim} Z_{n}^{2}$. We'll leave the derivation of this formula to the exercises.

We now construct the canonical filtered model for a c-connected CDGA $\left(A, d_{A}\right)$ by perturbing the bigraded model $(\Lambda Z, d) \xrightarrow{\rho}(H(A), 0)$. Define an increasing filtration of ΛZ by

$$
F_{n}(\Lambda Z)=\Sigma_{m \leq n}(\Lambda Z)_{m}
$$

A linear map $\phi: \Lambda Z \rightarrow \Lambda Z$ is filtration decreasing if

$$
\phi\left(F_{n}(\Lambda Z)\right) \subset F_{n-1}(\Lambda Z)
$$

for each n. If ϕ is a derivation, this is the same as saying that

$$
\phi\left(Z_{n}\right) \subset F_{n-1}(\Lambda Z) .
$$

The idea is to model $\left(A, d_{A}\right)$ by a $\operatorname{CDGA}(\Lambda Z, D)$ such that

$$
(D-d): Z_{n} \rightarrow F_{n-2}(\Lambda Z)
$$

where D is a perturbation of d in that $D=d_{1}+d_{2}+\ldots$ where $\left.d_{i}\right|_{Z_{n}} \subset(\Lambda Z)_{n-i}$. In other words, a perturbation is a map which sends elements to elements of strictly lower filtration.

Example. In the previous exercise, one shows that Z_{2} has a basis $\left\{z_{1}, \ldots, z_{10}\right\}$ with differentials $d z_{1}=y_{1} x_{1}$ and $d z_{i}=$ else for $i=2, \ldots, 10$. Let's perturb $(\Lambda Z, d)$ to a CDGA $(\Lambda Z, D)$ so that $D-d: Z_{n} \rightarrow F_{n-2}(\Lambda Z)$. One is forced to define $D=d$ on Z_{0} and Z_{1}, but on Z_{2} one defines $D z_{1}=y_{1} x_{1}+x_{3} x_{4}$ and $D z_{i}=d z_{i}$ for $i=2, \ldots, 10$. Then $D^{2}=0$ on $\Lambda Z_{(2)}$. Induction shows D can be extended to all of ΛZ. In particular, one shows that $D w=z_{1} x_{1}-y_{2}$ for some $w \in Z_{3}$, so that $(\Lambda Z, D)$ is not minimal and cannot be isomorphic to $(\Lambda Z, d)$.

Theorem 4.4. Let $\left(A, d_{A}\right)$ be a c-connected CDGA and let $\rho:(\Lambda Z, d) \rightarrow(H(A), 0)$ be the bigraded model for $H(A)$. Then there is a $\operatorname{CDGA}(\Lambda Z, D)$ and a homomorphism $\pi:(\Lambda Z, D) \rightarrow\left(A, d_{A}\right)$ such that

1. $(D-d): Z_{n} \rightarrow F_{n-2}(\Lambda Z), \quad n \geq 0$
2. $[\pi z]=\rho z$ for $z \in \Lambda Z_{0}$
3. π^{*} is an isomorphism

Moreover, suppose $\pi^{\prime}:\left(\Lambda Z, D^{\prime}\right) \rightarrow\left(A, d_{A}\right)$ satisfies the same conditions. Then there is an isomorphism $\phi:(\Lambda Z, D) \xrightarrow{\cong}\left(\Lambda Z, D^{\prime}\right)$ such that

1. $(\phi-\iota)$ is filtration decreasing
2. $\pi^{\prime} \phi \simeq \pi:(\Lambda Z, D) \rightarrow\left(A, d_{A}\right)$.

Sketch of proof. (Existence) One constructs D and π inductively on Z_{0}, Z_{1}, \ldots as follows. Fix a splitting $\eta: H(A) \rightarrow \Lambda Z_{0}$ of ρ. For Z_{0}, Z_{1}, Z_{2}, the definitions of D and π are forced by the choice of splitting. Assuming one has extended the definitions to $\Lambda Z_{(n)}$ for some $n \geq 2$, the ($n+1$)-case uses some clever definitions and linear algebra, so it's best read in the paper.
(Uniqueness) One must write an explicit homotopy between $\pi:(\Lambda Z, D) \rightarrow\left(A, d_{A}\right)$ and $\pi^{\prime}:\left(\Lambda Z, D^{\prime}\right) \rightarrow\left(A, d_{A}\right)$. This involves a rather long induction argument, but as above, one makes the correct definitions at each step so that the correct notion of uniqueness is satisfied at each step.

Recap. Starting with a CDGA $\left(A, d_{A}\right)$, we view its homology $H(A)$ as a CDGA $(H(A), 0)$, then produce a bigraded model $(\Lambda Z, d) \xrightarrow{\rho}(H(A), 0)$, and finally we perturb the bigraded model to obtain an isomorphic bigraded model $(\Lambda Z, D) \xrightarrow{\pi}\left(A, d_{A}\right)$. The last bigraded model is called the filtered model for $\left(A, d_{A}\right)$.

Obstruction theory. Fix an isomorphism of graded algebras

$$
f: H(A) \rightarrow H(B)
$$

where $\left(A, d_{A}\right)$ and $\left(B, d_{B}\right)$ are c-connected CDGA's. Let $\rho_{A}:(\Lambda Z, d) \rightarrow(H(A), 0)$ be the bigraded model. By uniqueness, the composition $\rho_{B}=f \circ \rho_{A}:(\Lambda Z, d) \rightarrow(H(B), 0)$ is the bigraded model for $H(B)$. Fix linear maps $\eta_{A}: H(A) \rightarrow \Lambda Z_{0}$ and $\eta_{B}: H(B) \rightarrow \Lambda Z_{0}$ so that composition with the bigraded model structure maps are the inclusion.

Perturb both bigraded models as above to obtain

$$
\begin{aligned}
& \pi_{A}:\left(\Lambda Z, D_{A}\right) \rightarrow\left(A, d_{A}\right) \\
& \pi_{B}:\left(\Lambda Z, D_{B}\right) \rightarrow\left(B, d_{B}\right)
\end{aligned}
$$

Theorem 5.3. The map f can be realized by a homotopy equivalence if and only if there is an isomorphism $\phi:\left(\Lambda Z, D_{A}\right) \rightarrow\left(\Lambda Z, D_{B}\right)$ such that $\phi-\iota$ decreases filtrations.

Proof. (\Leftarrow) Given such a ϕ, the sequence π_{A}, ϕ, π_{B} is a special homotopy equivalence, so by remarks from above, gives rise to an actual realization of f. To see that the sequence is a special homotopy equivalence, proceed as follows. If $\alpha \in H(A)$, then $\eta_{A} \alpha \in \Lambda Z_{0}$ satisfies $\left[\pi_{A} \eta_{A} \alpha\right]=\alpha$ by the construction of Z_{0}. Since $\phi_{\Lambda Z_{0}}=i d$, we have

$$
\pi_{B}^{*} \circ \phi^{*} \circ\left(\pi_{A}^{*}\right)^{-1}(\alpha)=\left[\pi_{B}\left(\eta_{A} \alpha\right)\right]=\rho_{B} \eta_{A} \alpha=f \rho_{a} \eta_{A} \alpha=f(\alpha)
$$

so the sequence is indeed a special homotopy equivalence.
(\Rightarrow) If f can be realized by a homotopy equivalence, the above remarks imply there is an isomorphism

$$
\psi:\left(M_{A}, \delta_{A}\right) \rightarrow\left(M_{B}, \delta_{B}\right)
$$

between the associated minimal models such that $m_{B}^{*} \circ \psi^{*} \circ\left(m_{A}^{*}\right)^{-1}=f$. By uniqueness of nilpotent models, there is a homomorphism

$$
\gamma:\left(\Lambda Z, D_{A}\right) \rightarrow\left(M_{A}, \delta_{A}\right)
$$

such that $m_{A} \circ \gamma \simeq \pi_{A}$. One can verify that $m_{B} \circ \psi \circ \gamma:\left(\Lambda Z, D_{A}\right) \rightarrow\left(B, d_{B}\right)$ satisfies the conditions of Theorem 4.4, so there is an isomorphism $\phi:\left(\Lambda Z, D_{A}\right) \xrightarrow{\cong}\left(\Lambda Z, D_{B}\right)$ such that $\phi-\iota$ decreases filtrations.

Definition. The isomorphism $f: H(A) \stackrel{\cong}{\leftrightarrows} H(B)$ is n-realizable if there is an isomorphism $\phi:\left(\Lambda Z_{(n+1)}, D_{A}\right) \rightarrow\left(\Lambda Z_{(n+1)}, D_{B}\right)$ such that $\phi-\iota$ decreases filtrations. In this case, ϕ is called an n-realizer for f.

If ϕ is an n-realizer for f, the degree 1 linear map

$$
\begin{gathered}
o(\phi): Z_{n+2} \rightarrow H(B) \\
\quad z \mapsto\left[\pi_{B} \phi D_{A} z\right]
\end{gathered}
$$

is called the obstruction element determined by ϕ. The set of these is denoted

$$
O_{n+1}(f)=\{o(\phi): \phi \text { is an } n \text {-realizer for } f\} .
$$

It's clear that if f is realizable, then it is n-realizable for all n. We'll address the converse after we finish setting up the obstruction theory. Note that

$$
O_{n+1}(f) \subset \operatorname{Hom}^{1}\left(Z_{n+2}, H(B)\right)
$$

i.e. degree 1 maps from Z_{n+2} to $H(B)$. Let

$$
M_{n} \subset \operatorname{Der}\left(\Lambda Z_{(n)}\right)
$$

be the space of filtration decreasing derivations θ of degree zero in $\Lambda Z_{(n)}$ which commute with the filtered model differential D_{B}, i.e. $D_{B} \theta=\theta D_{B}$. Define a linear map

$$
\begin{gathered}
\gamma: M_{n} \rightarrow \operatorname{Hom}^{1}\left(Z_{n+1}, H(B)\right) \\
\gamma(\theta)(z)=\left[\pi_{B} \theta D_{B} z\right] .
\end{gathered}
$$

With all of this in place, we define the obstructions as follows:
Proposition 5.6 Suppose ϕ is some $(n-1)$-realizer for f. Then

$$
O_{n}(f)=o(\phi)+\gamma\left(M_{n}\right) .
$$

Proof. Note that any other $(n-1)$-realizer ϕ^{\prime} for f is related to ϕ by some automorphism ψ of $\left(\Lambda Z_{(n)}, D_{B}\right)$ such that $\psi-\iota$ decreases filtration. One can verify that any such automorphism is of the form $\psi=e^{\theta}=\sum_{p=0}^{\infty}(1 / p!) \theta^{p}$ where $\theta \in M_{n}$, so the $(n-1)$-realizers of f are the isomorphisms of the form $e^{\theta} \phi, \theta \in M_{n}$.

Therefore $O_{n}(f)=\left\{o\left(e^{\theta} \phi\right): \theta \in M_{n}\right\}$ and we need to show

$$
o\left(e^{\theta} \phi\right)=o(\phi)+\gamma(\theta) .
$$

This is somewhat involved, but is not hard to follow and is left to the interested reader.
Some consequences of the "involved part" of the previous proof are the following results:
Proposition 5.7, Corollary 5.8. An $(n-1)$-realizer ϕ for f extends to an n-realizer if and only if $o(\phi)=0$. In particular, if f is $(n-1)$-realizable, then f is n-realizable if and only if

$$
O_{n}(f)=\gamma\left(M_{n}\right)
$$

Therefore $O_{n}(f)$ may be regarded as a single element in $\operatorname{Hom}^{1}\left(Z_{n+1}, H(B)\right) / \gamma\left(M_{n}\right)$, and it's this single element that we think of as the obstruction. We can now address the converse:

Theorem 5.10. If $H(A)$ has finite type, then f can be realized by a homotopy equivalence if and only if all the obstruction classes $O_{n}(f)$ vanish.

Theorem 5.15. Assume $H^{p}(A)=0$ for $1 \leq p \leq l$ and for $p>m$. Then f is realizable by a homotopy equivalence if and only if

$$
O_{n}(f)=0, \quad 1 \leq n \leq \frac{m-2}{l}-2
$$

Proof. The forward implication is obvious from Theorem 5.3, so we need to prove the reverse implication. Suppose $O_{n}(f)=0$ for $n \leq(m-2) / l-2$, let N be the largest integer n, and let ϕ be an N-realizer for f. We have

$$
O(\phi) \in \operatorname{Hom}^{1}\left(Z_{N+2}, H(B)\right)
$$

One can show by induction on k that if $H^{p}(A)=0$ for $1 \leq p \leq l$, then $Z_{k}^{p}=0$ for $1 \leq p \leq(k+1) l$. Since $N+1>(m-2) / l-2, H^{p}(A) \cong H^{p}(B)=0$ for $p>m$, we have $\operatorname{Hom}^{1}\left(Z_{N+2}, H(B)\right)=0$. Therefore $o(\phi)=0$ and ϕ extends to an $(N+1)$-realizer ϕ_{1} for f.

Repeating this process gives a sequence of $(N+k)$-realizers ϕ_{k} for f, and one then defines $\phi:\left(\Lambda Z, D_{A}\right) \rightarrow\left(\Lambda Z, d_{B}\right)$ by setting $\phi(u)=\phi_{p}(u)$ for $u \in \Lambda Z_{(N+p+1)}$. This satisfies Theorem 5.3, so f is realizable.

The proof of Theorem 5.10 is similar; one cleverly chooses a sequence of integers $m_{1} \leq$ $m_{2} \leq \cdots$ and the sequence of m_{n}-realizers ϕ_{n} piece together as above into an isomorphism satisfying Theorem 5.3, and therefore give rise to a homotopy equivalence.

