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Last time we talked about the Commutative Cochain Problem, i.e. we want a functor
A : sSet→ CDGAk such that its image A∗(X) ' C∗(X; k). Note that if we have A ∈ DGA,
its cohomology H∗(A) is a differential graded algebra. Here we are assuming k is a field of
characteristic zero.

Theorem. The category of commutative differential graded algebras over k, CDGAk,
is a model category. The weak equivalences are quasi-isomorphisms (i.e. isomorphisms in
cohomology), the fibrations are (levelwise) surjective morphisms, and the cofibrations are
maps which satisfy the left lifting property with respect to acyclic fibrations.

We’ll show that the polynomial differential forms functor Ω∗poly : sSet→ CDGA satisfies
the commutative cochain problem. How do we define this functor?

Let A∗• ∈ sDGA, i.e. A∗• : ∆op → DGA. Define A∗ : sSet → DGA be the functor
uniquely characterized by

1. A∗(∆[n]) = A∗n

2. A∗ takes colimits to limits

It is defined explicitly byAp(X) = sSet(X,Ap•). To define the differential, let f ∈ sSet(X,Ap•).
Then df is defined by (df)(x) = d(f(x)). The product structure is defined by (fg)(x) =
f(x)g(x). The unit is defined by 1(x) = 1. Note that the properties above also show that
A∗ is a Kan extension.

Since Ω∗• ∈ sDGA, each level Ω∗n is a DGA. The polynomial differential forms on an
n-simplex is defined as

Ω∗n =
k[t0, . . . , tn]⊗ Ω(dt0, . . . , dtn)

(t0 + · · ·+ tn − 1, dt0 + · · ·+ dtn)

where |ti| = 0 and |dti| = 1. The differential d : Ω∗n → Ω∗+1
n is given by d(f) =

∑n
i=0

∂f
∂ti
dt.

The simplicial structure on Ω∗• is defined as follows. Let φ ∈ ∆([m], [n]). Then φ∗ ∈
DGA(Ω∗n,Ω

∗
m) is defined by φ∗(ti) =

∑
j∈φ−1(i) tj and then the Leibniz rule.

Applying the above, we have Ωi
poly(X) = sSet(X,Ωi

•) with (df)(x) = d(f(x)), (fg)(x) =
f(x)g(x), and 1(x) = 1. This functor Ω∗poly : sSet → CDGA will satisfy the commutative
cochain problem after adding some hypotheses.

Theorem. If k ⊇ Q, then Ω∗poly
∼−→ Z

∼←− C∗(X; k).

What is the adjoint of this functor? We mentioned previously that it is spatial realization,
denoted < − >: CDGA → sSet. Let A ∈ CDGA. Then define < A >= DGA(A,Ω∗•), so
for example < A >n= DGA(A,Ω∗n). The simplicial structure is defined as follows. If
φ ∈ A([m], [n]), then φ̃ ∈ DGA(< A >n, < A >m) is defined by φ̃(f) = φ∗ ◦ f .



These functors form a contravariant adjuntion, and in fact, they form a Quillen equiva-
lence:

Theorem. The derived functors (denoted D(−) below) of the adjunction form an equiv-
alence of homotopy categories

D < − >: Ho(CDGA≥1,finQ ) � Ho(sSet≥1,finQ ) : DΩ∗poly.

Sullivan algebras are the main examples of commutative differential graded algebras we
are concerned with. Comparing Top and CDGA, we have the analogy that CW-complexes
correspond to Sullivan algebras. Furthermore, just as every space has a CW-approximation,
every connected DGA has a Sullivan model.

The analogs of spheres Sn and disks Dn are denoted S(n) and D(n−1). They are defined
as follows. For n > 0define

S(n) = (Λx, dx = 0)

and
D(n− 1) = (Λ(x, sx), dx = 0, d(sx) = x)

where |x| = n in both definitions and Λ = Sym is the free functor. Note that S(n) ⊂
D(n− 1). In fact, just as the generating cofibrations of Top are inclusions Sn ↪→ Dn+1, the
generating cofibrations in CDGA are the inclusions S(n) ↪→ D(n− 1).

If V is a graded vector space, we can define

S(V ) = (Λ(V ), dv = 0)

and
D(V ) = (Λ(V ⊕ sV ), dv = 0, d(sv) = v).

In general, a Sullivan algebra is defined as follows. Start with k in degree 0. Add (positive
degree) free generators with zero differential. For example, the sphere S(n) is obtained by
adding one generator in each degree a multiple of n. We can also add relations: add (positive
degree) free generators to kill the initial generators.

A minimal Sullivan algebra is a Sullivan algebra where the differential d only kills elements
of word length at least two. For example, the sphere is minimal but D(n−1) is not minimal
since the differential kills x which has word length one.

Theorem. Let A ∈ CDGA≥1, i.e. H0(A) = k and H1(A) = 0. Then A admits a unique
(up to isomorphism of CDGA’s) minimal Sullivan model, i.e. a map from a minimal Sullivan
algebra to A

(ΛV, d)
∼→ A

inducing an isomorphism on cohomology.

If X ∈ Top≥1,finQ , then its minimal Sullivan model is

AX
∼→ Ω∗poly(S•(X)).

Corollary. If X ∈ Top≥1,finQ , then



1. X has a unique, up to isomorphism, minimal Sullivan model AX = (ΛV, d) where
V = V ≥2 is a finitely generated Q-vector space.

2. If X, Y ∈ Top≥1,finQ , then X 'Q Y ⇐⇒ AX ∼= AY .

3. We can compute the rational homotopy groups of X as the dual below:

πk(X)⊗Q ∼=
(

A≥0X
A>0
X · A>0

X

)∨
= (V )∨

The main facts we will use are:

1. H∗(X;Q) ∼= H∗(AX)

2. π∗(X)⊗Q ∼= (V )∨

Example. If K(Q, n) is an Eilenberg-Mac Lane space, then πn(K(Q, n)) ∼= Q and
πi(K(Q, n)) = 0 for i 6= 0. Using (2) above, the corresponding CDGA is S(n). Therefore
H∗(K(Q, n);Q) ∼= H∗(S(n)) = Sym(x) with |x| = n. If n is even, Sym(x) = P (x) and if n
is odd, Sym(x) = E(x).


