Rational Homotopy Theory Seminar

Week 5: Minicourse Part V
P.J. Jedlovec

Recall we were considering the chain of Quillen equivalences between (up to decoration) Top, sSet, $C D G A, C D G C$, and $D G L$.

Today we are considering the Quillen equivalences

$$
\begin{gathered}
(-)^{\vee}: C D G A^{\text {fin }} \rightleftarrows C D G C^{\text {fin }}:(-)^{\vee} \\
\mathcal{L}: C D G C^{\geq 1, \text { coaug }} \rightleftarrows D G L^{\text {conn }}: \mathcal{C} \\
L_{*}: C D G A^{\text {fin }, \geq 1} \rightleftarrows D G L^{\text {conn }, \text { fin }}: C_{*}
\end{gathered}
$$

We'll assume that k is a field of characteristic zero. Recall the following definitions:
Definition. A differential graded Lie algebra, or chain Lie algebra, $L \in D G L$ is a chain complex of k-vector spaces

$$
\cdot \rightarrow L_{2} \xrightarrow{d} L_{1} \xrightarrow{d} L_{0}
$$

equipped with a Lie bracket $[-,-]: L_{p} \otimes L_{q} \rightarrow L_{p+q}$ satisfying

1. Antisymmetry $[x, y]=(-1)^{|x| y \mid+1}[y, x]$
2. Leibniz $d[x, y]=[d x, y]+(-1)^{|x|}[x, d y]$
3. Jacobi (see notes from a couple of weeks ago)

The morphisms between differential graded Lie algebras are maps defined levelwise which commute with d and $[-,-]$. We say that L is connected if $L=L_{\geq 1}$.

Definition. A differential graded coalgebra $C \in D G C$ is a chain complex of k-vector spaces

$$
\cdots \rightarrow C_{2} \xrightarrow{d} C_{1} \xrightarrow{d} C_{0}
$$

with comultiplication $\psi: C \rightarrow C \otimes C$ and augmentation $\epsilon: C \rightarrow k$ satisfying

1. $d \circ d=0$
2. $\left(i d_{C} \otimes \psi\right) \circ \psi=\left(\psi \otimes i d_{C}\right) \circ \psi$
3. $\left(i d_{C} \otimes \epsilon\right) \circ \psi=\left(\epsilon \circ i d_{C}\right) \circ \psi=i d_{C}$
4. $\psi \circ d=\left(d \otimes i d_{C}+\tau \circ\left(d \otimes i d_{C}\right) \circ \tau\right) \circ \psi$

Up to sign, the fourth rule says that $\psi(d c)=\sum c^{\prime} \otimes d c^{\prime \prime}+d c^{\prime} \otimes c^{\prime \prime}$ where $\psi(c)=\sum c^{\prime} \otimes c^{\prime \prime}$.
The morphisms between differential graded coalgebras are maps defined levelwise which commute with d and ψ. We say that C is cocommutative if $\tau \circ \psi=\psi$, coaugmented if it has a map $\eta: k \rightarrow C$, and connected if $C_{0}=k$.

We now want to define the free Lie algebra and the cofree differential graded coalgebra. We will define adjunctions

$$
\begin{aligned}
& \mathbb{L}: C h \rightleftarrows D G L: \text { forget } \\
& F: C h \rightleftarrows D G C: \text { forget } .
\end{aligned}
$$

The free Lie algebra on V is defined as follows. Begin by considering

$$
T(V)=\bigoplus_{k \geq 0} T^{k}(V)=\bigoplus_{k \geq 0} V^{\otimes k}
$$

with bracket

$$
[x, y]=x \otimes y+(-1)^{|x||y|+1} y \otimes x
$$

Then $\mathbb{L}(V)$ is the sub-Lie algebra of $T(V)$ generated by V.
The cofree differential graded coalgebra is defined using the same $T(-)$ functor as above. We have a comultiplication

$$
\begin{gathered}
\Delta: T(V) \rightarrow T(V) \boxtimes T(V) \\
\Delta\left(v_{1} \otimes \cdots \otimes v_{k}\right)=\sum_{j=0}^{k}\left(v_{1} \otimes \cdots \otimes v_{j}\right) \boxtimes\left(v_{j+1} \otimes \cdots \otimes v_{k}\right)
\end{gathered}
$$

and we can define $F(V)=T(V)$.
We are now ready to define the Quillen equivalence mentioned earlier. We have three adjunctions

$$
\begin{gathered}
\mathcal{L}: C D G C^{\text {conn }} \rightleftarrows D G L^{\text {conn }}: \mathcal{C} \\
\Omega: C D G C^{\text {conn }} \rightleftarrows C D G H^{\text {conn }}: B \\
P: C D G H^{\text {conn }} \rightleftarrows D G L^{\text {conn }}: U
\end{gathered}
$$

where $C D G H$ is the category of commutative differential graded Hopf algebras. We have the following definitions:

- $\mathcal{L}=P \circ \Omega$
- $P(H)=\{x \in H: \psi(x)=\lambda \otimes 1+1 \otimes x\}$, with bracket $[x, y]=x \otimes y+(-1)^{|x|} y \otimes x$
- $U(L)=T L /\left\{x \otimes y-(-1)^{|x||y|} y \otimes x-[x, y]\right\}$
- $\mathcal{C}=B \circ U$

The first adjunction is a Quillen equivalence, the third is an equivalence, and therefore the second is a Quillen equivalence.

Define

$$
\mathcal{L}(C)=\left(\mathbb{L}\left(s^{-1} C_{>0}\right), \delta=\delta_{0}+\delta_{1}\right)
$$

where

$$
\begin{gathered}
\delta_{0}\left(s^{-1} x\right)=-s^{-1} d_{C}(x) \\
\delta_{1}\left(s^{-1} x\right)=-\frac{1}{2} \sum_{i}(-1)^{\left|s x_{i}^{\prime}\right|}\left[s^{-1} x_{i}^{\prime}, s^{-1} x_{i}^{\prime \prime}\right]
\end{gathered}
$$

if $\psi\left(x_{i}\right)=\sum_{i} x_{i}^{\prime} \otimes x_{i}^{\prime \prime}$.
Define

$$
\mathcal{C}(L)=\left(\operatorname{Sym}(s L), d=d_{0}+d_{1}\right)
$$

where

$$
\begin{gathered}
d_{0}\left(s x_{1} \wedge \cdots \wedge s x_{k}\right)=\sum_{i}(-1)^{n_{i}}\left(s x_{1} \wedge \cdots s d_{C}\left(x_{i}\right) \wedge \cdots s x_{k}\right) \\
d_{1}\left(s x_{1} \wedge \cdots \wedge s x_{k}\right)=\sum_{i<j}(-1)^{\left|s k_{i}\right|+n_{i j}} s\left[x_{k}, x_{j}\right] \wedge s x_{1} \wedge \cdots \wedge \widehat{s x_{i}} \wedge \cdots \wedge \widehat{s x_{j}} \wedge \cdots \wedge s x_{k}
\end{gathered}
$$

where $s x_{1} \wedge \cdots \wedge s x_{k} \in \operatorname{Sym}(V)$ and $n_{i}=\sum_{j<i}\left|s x_{j}\right|$. This is also called the ChevalleyEilenberg construction.

A Lie model, or a Quillen model, for a simply connected topological space $X \in T o p^{\geq 1}$ is a differential graded Lie algebra $L_{X} \in D G L$ such that $C_{*}(L) \simeq \Omega_{\text {poly }}^{*}\left(S_{\bullet}(X)\right)$.

Fact.

$$
\pi_{*}(\Omega X) \otimes \mathbb{Q} \cong H_{*}\left(L_{X}\right)
$$

Examples.

- Let $n \geq 2$. Then $L_{S^{n}}=(\mathbb{L}(\alpha), \delta(\alpha)=0)$ where $|\alpha|=n-1$.
- We can add in generators via $(L[\xi], \delta \xi=\alpha)=L * \mathbb{L}(\xi)=\mathbb{L}(L \oplus \mathbb{L}(\xi)) /\left([x, y]_{L}=\right.$ $\left.[x, y]_{\mathbb{L}} ;[x, y]_{\mathbb{L}(\xi)}=[x, y]_{\mathbb{L}}\right)$

Theorem. Consider the pushout $X \cup_{f} D^{n+1}=\operatorname{colim}\left(D^{n+1} \leftarrow S^{n} \xrightarrow{f} X\right)$ where $\alpha \in L_{n-1}$ represents f. Let $L=L_{X}$. Then $(L(\xi), d \xi=\alpha)$ is a LIe model for $X \cup_{f} D^{n+1}$.

Example. Consider $\mathbb{C P}^{2}=\operatorname{colim}\left(D^{4} \leftarrow S^{3} \xrightarrow{\eta} S^{2}\right)$ where eta is one of the Hopf elements. Then $2 \eta=\left[\iota_{2}, \iota_{2}\right] \in \pi_{3}\left(S^{2}\right)$ and $L_{\mathbb{C P}^{2}}=\left(\mathbb{L}(\iota, \xi), \delta \iota=0, \delta \xi=\frac{1}{2}[\iota, \iota]\right)$.

