Exercises

Jens Jakob Kjaer

October 4, 2016

1

Given a functor $F: \mathcal{C} \to \mathcal{D}$ we can define $\operatorname{cr}_n(F): \mathcal{C}^n \to \mathcal{D}$ by $\operatorname{cr}_n(F)(X_1, \dots, X_n) := \operatorname{thofib}_{S \subset \{1,\dots,n\}}(\bigvee_{i \notin S} X_i)$, where thofib is the total homotopy fiber (iteratively applying homotopy fiber of the diagram).

1.1

Write out the diagram defining $cr_2(F)$

1.2

Use the fact that $D_n(F)(X) \simeq \operatorname{hocolim}_{l_1,\dots,l_n} \Omega^{l_1+\dots l_n} \operatorname{cr}_n(F)(\Sigma^{l_1}X,\dots,\Sigma^{l_n}X)_{h\Sigma_n}$, to calculate $\partial_*(id_{DGL})$ for *=1,2.

1.3

For $F: DGL \to DGL$ show that $\partial_n(F \circ \Sigma) = \partial_n(F) \wedge S^n$. Work out the Σ_n action.

$\mathbf{2}$

2.1

Given a functor $F: \mathcal{C} \to \mathcal{D}$ we can define

$$T_n(F)(X) = \text{holim}_{\emptyset \neq S \subset \{1,\dots,n+1\}} F(X \star S)$$

where $X \star Y = X \times I \times Y/(x,0,y) \sim (x,0,y')$, $(x,1,y) \sim (x',1,y)$, note $X \star \{1\} = CX$ and $X \star \{1,2\} = \Sigma X$. Use the fact that $P_n(F)(X) = \text{holim}(T_n(F)(X) \to T_n(T_n(F))(X) \to \ldots)$ to compute $P_1(id_{DGL})$.

2.2

Show that the identity on $Ch_{\mathbb{Q}}$ is 1-homogeneous.

3

3.1

Use the fact that $\partial_2(id_{Top_*}) \simeq S^{-1}$ with trivial Σ_2 action, and the operadic structure on $\partial_*(id_{Top_*})$, to define a product:

$$[\ ,\]:\pi_kD_n(X)\otimes\pi_lD_m(X)\to\pi_{k+l-1}D_{n+m}(X)$$

Show that $[x, y] = (-1)^{|x| \cdot |y|} [y, x]$.

3.2

Show that $\{Lie(n)\}_{n\in\mathbb{N}_0}$ as defined in the lectures forms an operad in chain complexes, and that algebras over it are exactly DGL.