Rational Homotopy Theory Seminar
Week 9: Examples and criteria for formality Jeremy Mann

Geometric motivation. Suppose given two links $L_{1}, L_{2} \in S^{3}$.
[picture of links]
From this data, one can define the linking number $\operatorname{Link}\left(L_{1}, L_{2}\right)$. Take $L_{1}: S^{1} \rightarrow S^{3}$ and fill it in along the inclusion $S^{1} \hookrightarrow D^{2}$ to get a map $D_{1}: D^{2} \rightarrow S^{3}$. Then we have

$$
\operatorname{Link}\left(L_{1}, L_{2}\right)=\sum_{\text {inter }, L_{2}, D_{1}}\{ \pm 1\}
$$

Gauss showed

$$
\operatorname{Link}\left(L_{1}, L_{2}\right)=\frac{1}{4 \pi} \int_{S^{1} \times S^{1}} \frac{\operatorname{det}\left(\dot{L_{1}}, \dot{L_{2}}, L_{1}-L_{2}\right)}{\left|L_{1}-L_{2}\right|^{3}}
$$

Recall. Given a map $f: S^{3} \rightarrow S^{2}$, how to determine if it's null-homotopic? Choose two points $x_{0}, x_{1} \in S^{2}$ and consider their (generically one-dimensional curves in S^{3}) fibers $f^{-1}\left(x_{i}\right)$. The Hopf invariant is defined by

$$
H(f)=\operatorname{Link}\left(f^{-1}\left(x_{0}\right), f^{-1}\left(x_{1}\right)\right) \in \mathbb{Z}
$$

How do we see that this is homotopy invariant? We'll define a new Hopf invariant which is clearly homotopy invariant, and then we'll show that it agrees with the old definition.

First, take a 2-form $\omega \in \Omega^{2}\left(S^{2}\right)$ with $\int \omega=1$, e.g. some normalized volume form or a bump function. Pulling back gives $f^{*} \omega \in \Omega^{2}\left(S^{3}\right)$, but since $H^{2}\left(S^{3}\right)=0$, we must have some $\eta \in \Omega^{1}\left(S^{3}\right)$ such that $f^{*} \omega=d \eta$. Then we define the new Hopf invariant by

$$
" H(f) "=\int_{S^{3}} f^{*} \omega \wedge \eta .
$$

Exercise. Homotoping f, ω, η doesn't change " $H(f)$ ". Hint: use Stokes theorem.
How do we relate this construction to the linking number definition? By the exercise, we can choose f to be transverse, ω to be a bump function around some point we're interested in, say x_{1}, and then when you look at the fiber, you get a tubular neighborhood η around $f^{-1}\left(x_{1}\right)$.
[picture of tubular neighborhood around $f^{-1}\left(x_{1}\right)$ with D_{0} the image of the disk with transverse intersection]
[picture of Borromean rings]
The linking number of any two rings is zero, but they cannot be unlinked.

Remark. Mathematical interpretation of the Trinity using Borromean rings (trinitas/unitas).

Exercises. Define $B=S^{3} \backslash K$ where K is the Borromean rings.

1. Compute $H^{*} B$ as a group
2. Find a minimal model for B. Interpret the products in the minimal model using cup product.
3. Interpret these elements in terms of God

Reference. Deligne-Sullivan-Morgan.
Recall. Let \mathcal{M} be a minimal commutative differential graded algebra. Suppose we have a filtration

$$
K \hookrightarrow \mathcal{M}_{1} \hookrightarrow \mathcal{M}_{2} \hookrightarrow \cdots \hookrightarrow \bigcup \mathcal{M}_{i}=\mathcal{M}
$$

such that as an algebra,

$$
\mathcal{M}_{i+1} \cong \mathcal{M}_{i} \otimes S y m V
$$

and such that $\left.d_{\mathcal{M}_{i+1}}\right|_{\mathcal{M}_{i}}=\left.d\right|_{\mathcal{M}_{i}}$ and $d_{\mathcal{M}_{i}}(V) \subset \mathcal{M}_{i}$.
Massey products. Suppose we're given three cohomology classes $[x],[y],[z] \in H^{*}(\mathcal{M})$ such that $[x] \cup[y]=0$ and $[y] \cup[z]=0$. By associativity, we have

$$
[x] \cup[y] \cup[z]=0,
$$

and it's zero "for two reasons".
Returning to the minimal model, suppose we have $x, y, z \in \mathcal{M}$. Then if $x \wedge y=d s$ and $y \wedge z=d t$, then we can define the Massey product by

$$
\langle x, y, z\rangle=\left[s \wedge z+(-1)^{|x|} x \wedge t\right] \in H^{*}(\mathcal{M}) .
$$

Note that we made choices of s and t above which might affect the Massey product.
Exercise. Varying choices above changes $\langle x, y, z\rangle$ by an element in $\left\{x H^{*}(\mathcal{M})+z H *\right.$ $(\mathcal{M})\}$.

Examples.

- Gluing disks along the equator for S^{2}.
- An analogous construction using bordism groups.

Example. Consider the minimal model which is k in degree 0,0 in degree $1, x, y$ in degree 2 with $d(x)=0$ and $d(y)=0, u, v$ in degree 3 which have $d(u)=x^{2}$ and $d(v)=x y$. Then we have

$$
\langle x, x, y\rangle=[u \wedge y-x \wedge v] .
$$

We need to determine the indeterminacy subgroup of this Massey product, since if the class lives there it's zero. The indeterminacy group is

$$
\left\{x H^{3}(\mathcal{M})+y H^{3}(\mathcal{M})\right\}=\{0\} .
$$

Definition. Let \mathcal{M} be a minimal model. Then \mathcal{M} is formal if there exists a map

$$
f: \mathcal{M} \rightarrow H^{*} \mathcal{M}
$$

such that f is an algebra homomorphism and f is a quasi-isomorphism.
Example. If \mathcal{M} is formal and all Massey products have no indeterminacy, then all Massey products must be trivial. To see this, note that you're formal if and only if any you're isomorphic to a cdga with zero differential. Since Massey products are invariants of quasi-isomorphism class, all Massey products are zero.

Theorem. Suppose \mathcal{M} is generated by $\bigoplus V^{i}$ where $C^{i} \subset V^{i}$ are the closed elements. Then \mathcal{M} is formal if and only if there exists a splitting $\pi: V^{i} \rightarrow C^{i}$ (i.e. $V^{i} \simeq N^{i} \oplus C^{i}$) such that if $\alpha \in I\left(\bigoplus N^{i}\right)$ with $d \alpha=0$, then α is exact.

In particular, formality is stronger than just all Massey products vanishing.

