Rational Homotopy Theory Seminar
Week 9: Examples and criteria for formality
Jeremy Mann

Geometric motivation. Suppose given two links L, L, € S5.
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From this data, one can define the linking number Link(Ly, Ly). Take L; : S' — S3 and
fill it in along the inclusion S' < D? to get a map D; : D?> — S®. Then we have

Link(Ly, L) = Y {£1},

inter,Lo,D1

Gauss showed
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Recall. Given a map f : S — S2, how to determine if it’s null-homotopic? Choose
two points g, z; € S? and consider their (generically one-dimensional curves in S?) fibers

f~Yx;). The Hopf invariant is defined by

H(f) = Link(f~ (x0), f~'(21)) € Z.

How do we see that this is homotopy invariant? We’ll define a new Hopf invariant which
is clearly homotopy invariant, and then we’ll show that it agrees with the old definition.

First, take a 2-form w € Q*(S?) with [w = 1, e.g. some normalized volume form or a
bump function. Pulling back gives f*w € Q?(S?), but since H?(S%) = 0, we must have some
n € Q'(S?) such that f*w = dn. Then we define the new Hopf invariant by

CH(f) = | [ffwnn.
g3

Exercise. Homotoping f,w,n doesn’t change “H(f)”. Hint: use Stokes theorem.

How do we relate this construction to the linking number definition? By the exercise, we
can choose f to be transverse, w to be a bump function around some point we’re interested
in, say x;, and then when you look at the fiber, you get a tubular neighborhood 7 around

f ().
[picture of tubular neighborhood around f~!(z;) with D, the image of the disk with

transverse intersection)]

[picture of Borromean rings]
The linking number of any two rings is zero, but they cannot be unlinked.



Remark. Mathematical interpretation of the Trinity using Borromean rings (trini-
tas/unitas).

Exercises. Define B = S3\ K where K is the Borromean rings.

1. Compute H*B as a group

2. Find a minimal model for B. Interpret the products in the minimal model using cup
product.

3. Interpret these elements in terms of God

Reference. Deligne-Sullivan-Morgan.

Recall. Let M be a minimal commutative differential graded algebra. Suppose we have
a filtration

KoMy My | M =M

such that as an algebra,
M1 =2 M; @ SymV

and such that duy,,, |am, = d|m, and dag, (V) C M.

Massey products. Suppose we're given three cohomology classes [z], [y], [z] € H*(M)
such that [z] U [y] = 0 and [y] U [z] = 0. By associativity, we have

[zl Uyl U [z] =0,
and it’s zero “for two reasons”.

Returning to the minimal model, suppose we have z,y, 2z € M. Then if x Ay = ds and
y A z = dt, then we can define the Massey product by

(x,y,2) = [s Az + (=1)"lz A t] € H*(M).
Note that we made choices of s and ¢t above which might affect the Massey product.

Exercise. Varying choices above changes (z,y, z) by an element in {zH*(M) + zH *
(M)}

Examples.

e Gluing disks along the equator for S2.

e An analogous construction using bordism groups.

Example. Consider the minimal model which is £ in degree 0, 0 in degree 1, z,y in
degree 2 with d(z) = 0 and d(y) = 0, u,v in degree 3 which have d(u) = z? and d(v) = xy.
Then we have

(x,z,y) =[uNy —x Avl.



We need to determine the indeterminacy subgroup of this Massey product, since if the class
lives there it’s zero. The indeterminacy group is

{eH (M) + yH> (M)} = {0}.
Definition. Let M be a minimal model. Then M is formal if there exists a map
f:M—=HM

such that f is an algebra homomorphism and f is a quasi-isomorphism.

Example. If M is formal and all Massey products have no indeterminacy, then all
Massey products must be trivial. To see this, note that you're formal if and only if any
you're isomorphic to a cdga with zero differential. Since Massey products are invariants of
quasi-isomorphism class, all Massey products are zero.

Theorem. Suppose M is generated by @ V* where C* C V' are the closed elements.
Then M is formal if and only if there exists a splitting 7 : V¢ — C? (i.e. V' ~ N'&® C") such
that if « € I(D N*) with da = 0, then « is exact.

In particular, formality is stronger than just all Massey products vanishing.



