
Operads and Loop Space Machinery Seminar
Week 1: Minicourse Part I, Loop spaces and spectra

J.D. Quigley

1. Overview of minicourse

1.1. References. The minicourse will be based on the following texts:

(1) Adams, “Infinite loop spaces”
(2) May, “The geometry of iterated loop spaces”
(3) Cohen-Lada-May, ”The homology of iterated loop spaces”
(4) Hatcher, “Algebraic topology”

1.2. Outline. An outline for the minicourse:

(1) Motivation for loopspace theory. Generalized cohomology theories, Brown
representability theorem, spectra, additional structure. Overview of applica-
tions and some possible topics for talks after the minicourse.

(2) Operads. Definition and examples. Some technical lemmas.
(3) The approximation theorem. Key ingredients and sketch of proof.
(4) The recognition principle. Key ingredients and sketch of proof. Homology of

iterated loop spaces.

2. Cohomology theories

The primary tools for understanding spaces in algebraic topology are cohomology
theories. We begin by recalling their definition.

Definition 2.1. A cohomology theory E is a sequence of contravariant functors En :
(X,A) 7→ En(X,A), n ∈ Z, from the category of pairs of topological spaces to the
category of abelian groups, together with a natural transformation d : Ei(X,A) →
Ei+1(A). These are required to satisfy the Eilenberg-Steenrod axioms :

(1) (homotopy) If f, g : (X,A) → (Y,B) are homotopic maps, then the induced
maps f ∗, g∗ : En(Y,B)→ En(X,A) are the same for all n ∈ Z.

(2) (excision) If X = A ∪ B, then the inclusion f : (A,A ∩ B)→ (X,B) induces

an isomorphism En(X,B)
f∗→ En(A,A ∩B) for all n ∈ Z

(3) (dimension) En(pt) = 0 for all n 6= 0.
(4) (additivity) If X =

⊔
αXα is a disjoint union of spaces, then En(X) ∼=∏

αE
n(Xα) for all n ∈ Z

(5) (exactness) Each pair (X,A) induces a long exact sequence in cohomology via
the inclusions f : A→ X and g : (X, ∅)→ (X,A),

· · · → Ei(X,A)→ Ei(X)→ Ei(A)→ Ei+1(X,A)→ · · · .
We say that E is a generalized cohomology theory if it satisfies all of the Eilenberg-
Steenrod axioms except possibly dimension.

Remark 2.2. We can similarly define (generalized) homology theories

Example 2.3. We list a few examples here:
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(1) Singular cohomology with coefficients in an abelian group A, denoted H∗(−;A)
(2) de Rham cohomology, denoted H∗dR(−)
(3) Topological K-theory, denoted KO∗(−) or KU∗(−)
(4) Cobordism, denoted MO∗(−) or MU∗(−)

3. From cohomology theories to Ω-spectra

Definition 3.1. We will denote homotopy classes of pointed maps between pointed
spaces X and Y by

[X, Y ] = {f : X → Y }/(f ∼ g if f and g are homotopic).

The n-th homotopy group of a space X is then

πn(X) := [Sn, X]

where Sn is the n-sphere.

We’ll examine the first example in more detail here. A definition of singular co-
homology with coefficients in Z can be found in Section 2.1 of Hatcher’s “Algebraic
Topology”. We’ll give a different but equivalent definition here for any abelian group
A.

Let K(A, n) denote the Eilenberg-MacLane space for A. This is a space character-
ized by the property that

πi(K(A, n)) =

{
A i = n,

0 else.

Writing A in terms of generators and relations, the construction of this space as a
CW complex can roughly be described as realizing this presentation using n and
n+ 1-spheres, then attaching larger dimensional cells to kill higher homotopy groups.

The n-th singular cohomology of X with coefficients in A can be defined as

Hn(X;A) := [X,K(A, n)].

In the language of category theory, the space K(A, n) represents the functor Hn in
the category of based spaces and homotopy classes of maps.

Recall that there is an adjunction

Σ : Top∗ � Top∗ : Ω

where Σ denotes reduced suspension,

ΣX = (S1 ×X)/(S1 ∨X) ∼= S1 ∧X,
and Ω denotes (based) loops,

ΩX = Maps∗(S
1, X).

Then we have

πi(K(A, n)) = [Si, K(A, n)] ∼= [ΣSi−1, K(A, n)] ∼= [Si−1,ΩK(A, n)]

from which we conclude that K(A, n) ∼= ΩK(A, n+ 1).
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In other words, to define Hn(−;A) for all n ∈ Z, we just needed to define K(A, 0)
and then understand the “deloopings” of K(A, 0), i.e. spaces X which are models for
K(A, n) in that ΩnX ∼= K(A, 0). This seems like a silly thing to think about since
we’ve already seen how to construct K(A, n) for all n ≥ 0, but we’ll see below that
it’s a useful idea. First we need a definition.

Definition 3.2. An Ω-spectrum is a sequence of based spaces {Kn}, n ≥ 0, together

with homeomorphisms Kn

∼=→ ΩKn+1.

Example 3.3. We have just shown that {K(A, n)}, n ≥ 0, form an Ω-spectrum.

Theorem 3.4. (Brown representability theorem) Every reduced cohomology theory
has the form

En(X) = [X,Kn]

for some Ω-spectrum {Kn}.

Proof. See Section 4.E of Hatcher’s “Algebraic Topology”. �

We can also verify that every Ω-spectrum gives rise to a cohomology theory. There-
fore we have a correspondence between cohomology theories and Ω-spectra.

4. From Ω-spectra to infinite loop spaces

By definition, the 0-th space in an Ω-spectrum is homeomorphic to the iterated
loop spaces of the i-th spaces, i.e.

K0
∼= ΩK1

∼= Ω2K2
∼= · · · ∼= ΩnKn

∼= Ωn+1Kn+1
∼= · · · .

Definition 4.1. We say that X is an n-fold loop space if X satisfies X ∼= ΩnY for
some space Y . We say that X is an infinite loop space if X = ΩnYn for some spaces
Yn and all n ≥ 1.

We can define a functor
Ω∞ : Ω− Sp→ Top∗

by the assignment E 7→ E0. If X is an infinite loop space, we can define a functor
the opposite direction

Σ∞ : Top∗ → Sp

by setting (Σ∞X)n := ΣnX.

By the previous discussion, E0 is an infinite loop space. Therefore we have the
following correspondences:

(cohomology theories)
(1)↔ (Ω-spectra)

(2)↔ (infinite loop spaces)

Here (1) is given by the Brown representability theorem and (2) is Ω∞ and Σ∞.

Example 4.2. At this point, we mention another example of a cohomology theory/Ω-
spectrum/infinite loop spaces where this story is fully understood. If X is a nice space,
we can define the complex topological K-theory of X by

K0(X) := Gr(V ect(X)).
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Here, Gr(−) is the Grothendieck group completion of a commutative monoid, and
V ect(X) is the monoid of isomorphism classes of complex vector bundles over X with
monoidal structure given by direct sum. Then one can verify that

K0(X) ∼= [X,BU ]

where BU is the classifying space of the unitary group.
Complex Bott Periodicity shows that we have

ΩU ' BU × Z,

Ω(BU × Z) ' U.

Since ΩBU ' Ω(BU×Z), we see that BU is an infinite loop space. Therefore K0(−)
extends to a cohomology theory Kn(−).

Bott Periodicity is a stunning example of understanding iterated loops of a space.
In general, it’s very difficult to understand ΩnX for any n or X.

5. Additional structure in cohomology theories

There is some additional structure in the cohomology theories we mentioned above.

Example 5.1. All of the cohomology theories described above are actually multiplica-
tive cohomology theories. We briefly mention the source of these additional structures
here:

(1) In singular cohomology with coefficients in a ring R, we can define a cup
product pairing

H i(X;R)×Hj(X;R)→ H i+j(X;R).

See, for example, Section 3.2 of Hatcher’s “Algebraic Topology”. This addi-
tional structure for R = F2 can be used to distinguish between spaces like RP n

and
∨n
i=1 S

i.
(2) In de Rham cohomology, wedge product of differential forms gives rise to a

similar multiplicative structure in H∗dR(M ;R).
(3) In topological K-theory, tensor product of vector bundles gives rise to a similar

multiplicative structure in K∗(X)
(4) In complex cobordism, Cartesian product of manifolds gives rise to a similar

multiplicative structure in MU∗(X)

Note that many of these products correspond to geometric constructions. In other
words, we might suspect that these structures are easier to understand or produce in
the infinite loop space corresponding to a cohomology theory.

There is even more structure in some of these cohomology theories, called coho-
mology operations.

Example 5.2. In the case of mod p singular cohomology, H∗(X;Fp) is a module over
the Steenrod algebra A. When p = 2, one can show that

A ∼= 〈Sqi|i ≥ 0〉/ ∼
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where ∼ is the Adem relations. Here,

Sqi : Hn(X;F2)→ Hn+i(X;F2).

Cohomology operations can be difficult to understand at the level of infinite loop
spaces; we will address a dual notion, homology operations. In the case of mod
p singular homology, these are called Araki-Kudo-Dyer-Lashof operations and have
been used extensively in many areas of stable homotopy theory.

6. Goals for the minicourse

The goal of the minicourse is to address the following questions:

(1) How do we know if a topological space X is an (infinite) loop space? This is
the recognition principle which we will work towards. In particular, we will
see that X is an n-fold loop space if it receives an action of a certain operad
(to be defined next week).

(2) What can we say about the homotopy type of an infinite loop space? For
Eilenberg-MacLane spaces this was by definition, and for BU and BO we
needed Bott Periodicity. More generally, we will see that the construction
above gives techniques for understanding the homology of such spaces.

(3) What structure can be understood in cohomology by understanding structure
in the corresponding infinite loop space? This is closely related to the previous
question.


