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1. References.

This part of the minicourse will be based on Sections 1-3 of May’s “The geometry
of iterated loop spaces”. The exposition will also draw from Adams’ “Infinite loop
spaces” and May’s survey “Infinite loop space theory”.

2. Motivation and definition of operads

Our goal is to understand when a space X is actually an n-fold or infinite loop
space. First, let’s try to understand some of the additional structure we have in an
n-fold loop space.

Example 2.1. Say X is a 1-fold loop space, so X ∼= ΩY for some Y . Then there is a
natural product structure on X, i.e. a map X ×X → X, induced by the composition
of loops:

X ×X ∼= ΩY × ΩY → ΩY ∼= X

(g, f) 7→ g ◦ f.
Note that we made a choice here! Composition of loops is usually defined by running
the first loop and second loop at equal speeds, i.e. dividing the unit interval at 1

2
.

However, we could have defined a product by choosing any real number 0 < i1 < 1.
Therefore we actually have an entire interval worth of products, all of which are
equivalent up to homotopy (by reparametrizing the loops).

The complexity of this space of products increases when we assume X is a 2-fold
loop space.

Example 2.2. Say X is a 2-fold loop space, so X ∼= Ω(ΩY ) ∼= Ω2Y for some Y . As
above, there is a product on X

X ×X ∼= ΩΩY × ΩΩY → ΩΩY ∼= X

(g2 ◦ g1, f2 ◦ f1) 7→ g2 ◦ g2 ◦ f2 ◦ f1
Then there is a larger space of products corresponding to the different ways of parametriz-
ing these compositions, all of which are equivalent up to homotopy. Moreover, these
products should be compatible with the products we obtain if we forget that X is a
2-fold loop space and only think of it as a 1-fold loop space.

In general, the more “deloopable” X is, the more complicated the space of (equiva-
lent up to homotopy) products on X becomes. An operad is a tool which keeps track
of these spaces of products and their compatibilities with each other.

Definition 2.3. An operad O consists of spacesO(j) ∈ Top for j ≥ 0 withO(0) = pt,
together with continuous functions

γ : O(k)×O(j1)× · · · × O(jk)→ O(j)
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where j =
∑
js, such that the following properties hold:

(1) (associativity) For all c ∈ O(k), ds ∈ O(js), and et ∈ O(it),

γ(γ(c; d1, . . . , dk); e1, . . . , ej) = γ(c, f1, . . . , fk),

where fs = γ(ds; ej1+···+js−1+1, . . . , ej1+···+js) and fs = pt if js = 0.
(2) (identity) There is an element 1 ∈ O(1) such that γ(1; d) = d for all d ∈ O(j)

and γ(c; 1, . . . , 1) = c for c ∈ O(k)
(3) (equivariance) A right action of the symmetric group Σj on O(j) such that

for all c ∈ O(k), ds ∈ O(js), σ ∈ Σk, and τs ∈ Σjs ,

γ(cσ; d1, . . . , dk) = γ(c; dσ−1(1), . . . , dσ−1(k))σ(j1, . . . , jk),

γ(c; d1τ1, . . . , dkτk) = γ(c; d1, . . . , dk)(τ1 ⊕ · · · ⊕ τk),
where σ(j1, . . . , jk) denotes the permutation of j letters which permutes the
k blocks of letters determined by the given partition of j as σ permutes k
letters, and τ1 ⊕ · · · ⊕ τk denotes the image of (τ1, . . . , τk) under the inclusion
of Σj1 × · · · × Σjk in Σj.

An operad O is Σ-free if Σj acts freely on O(j) for all j. A morphism of operads is
a sequence of Σj-equivariant maps which commute with γ.

In general, we think of the j-th space of an operad as encoding the j-ary operations.
We’ll work through the following examples during the exercises this week. For now,
we’ll just the spaces and maps without checking the axioms. The first two examples
can be thought of as encoding structural information; in particular, they encode
strictly commutative multiplication and strictly associative multiplication.

Example 2.4. (1) The commutative operad Com has spaces Com(j) = ∗. There
is only one choice for the structure maps γ. In this case, the operad says
that multiplying in any order and even switching factors does not change the
output.

(2) The associative operad As has spaces As(j) = Σj. In this case, we are allowed
to change the order of multiplication, but not switch factors.

3. Endomorphism operads and O-spaces

We would like to have a way of talking about an operad encoding multiplication
on a space. The correct notion here is an operad acting on a space; drawing out all
of the diagrams for this to make sense is somewhat tedious, so instead this idea is
repackaged in the following example/definition.

Definition 3.1. Let X be a based space. The endomorphism operad EX of X is
defined as follows. Let EX(j) be the space of based maps Xj → X, with X0 = ∗, and
EX(0) the inclusion ∗ → X. The structure maps are

(1) γ(f ; g1, . . . , gk) = f(g1 × · · · × gk) for f ∈ EX(k) and gs ∈ EX(js).
(2) Identity element 1 ∈ EX(1) is the identity map X → X
(3) (fσ)(y) = f(yσ) for f ∈ EX(j), σ ∈ Σj, and y ∈ Xj.



3

An operation θ of an operad O on a space X is a morphism of operads θ : O → EX .
The pair (X, θ) is called an O-space. A morphism of O-spaces f : (X, θ) → (X ′, θ′)
is just a map of spaces X → X which commutes with the operations.

We’ll work through an explicit example in the exercise session this week, but we’ll
include some details for the most topologically simple operad now.

Example 3.2. To get a better idea of what an O-space is, we make explicit some of the
structure of an O-space (X, θ) for the commutative operad Com. Firstly, a morphism
of operads is a sequence of equivariant maps which commute with the structure maps
γ. In this case, we have Σj-equivariant maps

θ(j) : Com(j) = ∗ →Map∗(X
j, X) = EX(j).

Since the identity in Com(1) must map to the identity in EX(1), we have that

θ(1)(∗) = (id : X → X) ∈Maps∗(X,X) = EX(1).

Let’s examine θ(j) for j small. Let γC be the structure map for the commutative
operad and let γX be the structure map for the endomorphism operad of X. For k = 2,
j1 = j2 = 1, we have a commutative diagram

∗ × ∗ × ∗ ∗

Maps∗(X
2, X)×Maps∗(X,X)×Maps∗(X,X) Maps∗(X

2, X).

µ×id×id

γC

id2

γX

The Σ2-action on the top arrow says that we can permute the two right-most points
without changing the effect. Mapping this permutation downwards in the diagram, we
conclude that in the bottom row,

γX(θ(2)(∗); id, id) = γX(θ(2)(∗); id, id).

Denoting θ(2)(∗) by µ : X × X → X, we see that θ(2) is picking out a strictly
comutative multiplication on X, i.e. µ(x, y) = µ(y, x) for all x, y ∈ X.

Similar arguments show that θ(3) picks out ways of multiplying three elements, and
by compatibility with θ(2), we obtain the relation

µ(x, µ(y, z)) = µ(µ(x, y), z).

Since µ is commutative, we conclude that θ(3) must pick out a way of multiplying
three elements in X such that the order doesn’t matter, and so that the choice is
consistent with the product on two elements.

Going further, we would obtain ways of multiplying any number of elements, with
the requirement that we can multiply in any order and the n-fold multiplication is
compatible with the i-fold multiplications for all 2 ≤ i ≤ n− 1.
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4. The Recognition Principle and A∞ and E∞ operads

Some thought shows that Com-spaces are too rigid to model infinite loop spaces.
Indeed, in order to define a multiplication on loop spaces, we had to choose a
parametrization for composing loops, and this choice will not give equivalent loops
when we try to compose more than two loops. For example, if we decided that
µ(f, g) is just f ◦ g where we run both loops at the same speed, then µ(f, µ(g, h)) 6=
µ(µ(f, g), h). Therefore an infinite loop space cannot naturally be given the structure
of a Com-space. The correct operad to encode the structure of an infinite loop space
is given by the Recognition Principle.

Theorem 4.1 (Recognition Principle). There exists Σ-free operads On, 1 ≤ n ≤ ∞,
such that every n-fold loop space is a On-space and every connected On-space has the
weak homotopy type of an n-fold loop space.

At the extremes, we have two important definitions. A 1-fold loop space has a
product which we should expect to be associative up to homotopy (and all higher
homotopies). On the other hand, an infinite loop space has a product which we
should expect to be commutative up to homotopy (and all higher homotopies). In
this case, the operads On can be replaced by A∞ and E∞ operads.

Definition 4.2. AnA∞ operad is a Σ-free operadO such thatO(j) is Σj-equivariantly
homotopy equivalent to the space Σj.

An E∞ operad is a Σ-free operad O such that O(j) is Σj-contractible for all j.

The definition above is formulated so that there isn’t just one A∞ or E∞ operad.
In fact, there are many A∞ and E∞ operads. In the context of infinite loop spaces,
we are interested in E∞ operads. We will see that certain E∞ operads naturally act
on some infinite loop spaces but not others. This flexibility in choice of E∞ operad
is the real strength of this framework and the Recognition Principle.

Example 4.3. We begin by listing various A∞ operads.

(1) The associative operad As is an A∞ operad.
(2) A combinatorial model of an A∞ operad is given by Stasheff associahedra. We

will not discuss it further, but we mention that this operad plays an important
role in Robinson’s A∞ obstruction theory.

(3) The model closest to what we will see in the exercises and the proof of the
Recognition Principle is the little intervals operad I, defined by setting the
n-th level

I(n) = Emb(
n⊔
i=1

I, I)

to be embeddings of n disjoint intervals into the unit interval. This operad
naturally appears in the study of configuration spaces, as well as functor cal-
culus.

Example 4.4. We now list some examples and non-examples of E∞ operads.
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(1) The commutative operad Com is not E∞ operad, since the action of Σn on
Com(n) = ∗ is not free.

(2) The Barratt-Eccles operad E is defined by setting the n-th level

E(n) = EΣn

to be the universal space for Σn. We will not discuss it further, but we mention
that this operad plays an important role in Robinson’s E∞ obstruction theory.

(3) The little n-cubes operads On are the operads which appear in the statement
of the Recognition Principal. The levels of On are defined as follows. Let
Jn = int(In) be an open n-cube. An (open) little n-cube is a linear embedding
of Jn in Jn. Let On(j) to be the space of pairwise disjoint ways of embedding
j little n-cubes into Jn. Here, the topology is the subspace topology coming
from the compact-open topology on Emb((Jn)j, Jn). Letting n tend to infinity
gives an E∞-operad.

We will explore these definitions and examples further in the exercise session this
week.


