
Operads and Loop Space Machinery Seminar
Week 3: Minicourse Part III, The Approximation Theorem

J.D. Quigley

1. References.

This part of the minicourse will be based on Sections 2-6 of May’s “The geometry
of iterated loop spaces”. We are also grateful to Jonathan Rubin and Jens Jakob
Kjaer for clarifying some of this material.

2. Monoidal categories and monads

The Recognition Principle follows by reduction to the Approximation Theorem.
In order to state the Approximation Theorem, we need the notion of monads. We’ll
give a streamlined definition using category theory this week, but during the exercises
we’ll unpack some of these definitions.

Definition 2.1. A monoidal category (C,⊗, 1) consists of the following data:

• A category C.
• An associative and unital multiplication ⊗ : C×C → C satisfying some natural

compatibility axioms
• An object 1 ∈ C which is a unit for the multiplication

Roughly speaking, a monoidal category (C, µ, 1) is symmetric monoidal if the multi-
plication is commutative.

A monoid in a monoidal category (C, µ, η) is an object M ∈ C together with
morphisms µ : M ⊗ M → M and η : 1 → M , such that certain compatibility
diagrams commute.

Example 2.2. We already know several examples of (symmetric) monoidal cate-
gories:

(1) The category of nonempty pointed sets has unit object some singleton set and
multiplication given by Cartesian product. A monoid in this setting is a group.

(2) The category of pointed topological spaces has unit object a point and multi-
plication given by Cartesian product. A loop space is an example of a monoid
in this setting.

(3) The category of rings has unit object the integers and multiplication given by
tensor product. A monoid in this setting is an algebra.

To define monads, we’ll introduce another monoidal category.

Definition 2.3. Let C be a category. The category of endofunctors of C, denoted
EndC, has the following data:

(1) Objects are endofunctors of C, i.e. functors F : C → C.
(2) Morphisms are natural transformations of functors, i.e. η : F ⇒ G.
(3) Composition is given by composition of natural transformations.

1



2

This is a monoidal category with unit object the identity functor id : C → C and
multiplication given by composition of functors,

µ : EndC × EndC → EndC,

(F,G) 7→ F ◦G.
A monad is a monoid in EndC.

This concept packages a lot of information we want into one definition. Further-
more, monads naturally occur any time we have an adjunction.

Example 2.4. Suppose we have an adjunction

F : C � D : G.

Then the composition G ◦ F : C → C is a monad. We include the verification as an
optional exercise this week.

We can apply this fact to the adjunctions

Σn : Top∗ � Top∗ : Ωn

to obtain a monad ΩnΣn.
In the limiting case, we have an adjunction

Σ∞ : Top∗ � Ω− Spectra : Ω∞

which gives a monad Q := Ω∞Σ∞.

3. Monads from operads and the Approximation Theorem

Now, we return to operads. Just as with an adjunction, an operad always has an
associated monad. To define this monad, we need to produce certain maps σi between
space in an operad; one example of these maps is given below.

Example 3.1. In the endomorphism operad of a space X, there is a natural map
σi : EX(j) → EX(j − 1) induced by evaluating on the basepoint of the i-th factor of
Xj. That is, we define

si : Xj−1 → Xj,

x = (x1, . . . , xj−1) 7→ (x1, . . . , xi, ∗, xi+1, . . . , xj−1)

and for c ∈ EX(j) = Maps∗(X
j, X) and overlinex ∈ Xj−1, we set

(σic)(x) = c(si(x)).

The structure maps in an operad allows us to define the map σi : O(j)→ O(j− 1)
more generally. For c ∈ O(j), let σic = γ(c; si) where

si = 1i × ∗ × 1j−i−1 ∈ O(1)i ×O(0)×O(1)j−i−1.

The purpose of these maps is to rectify the fact that the unit in our operads is often
only a unit up to homotopy; essentially, the maps σi glue together the different choices
of unit when multiplying. We now define the monad C associated to an operad O; if
we evaluate C on a space X, the space CX is the “free O-algebra on X”.
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Construction 3.2. Let O be an operad. We can construct a monad (C, µ, η) asso-
ciated to O as follows. For a pointed space X, let

CX =

(⊔
j≥0

O(j)×Xj

)
/ ∼

where

(σic, y) ∼ (c, siy) for c ∈ O(j), 0 ≤ i < j, y ∈ Xj−1,

(cσ, y) ∼ (c, σy) for c ∈ co(j), σ ∈ Σj, y ∈ Xj.

We will not differentiate between an element in O(j)×Xj and its image in CX. The
monad structure maps are given by

µ : C2X → CX,

µ(c, (d1, y1), . . . , (dk, yk)) = (γ(c; d1, . . . , dk), y1, . . . , yk),

and

η : X → CX,

η(x) = (1, x).

There is an obvious filtration on CX coming from truncating the disjoint union at
some finite index, i.e.

FnCX =

(
n⊔
j=0

O(j)×Xj

)
/ ∼ .

In fact, the topology on CX is defined as the colimit topology of the topologies on
these pieces, which have the quotient topology. The associated graded pieces of this
filtration are homeomorphic to the levels of the monadic bar construction of O and X
which we will discuss next week. If X is an infinite loop space, then the Recognition
Principle tells us that X receives an action of an E∞ operad. If we choose the
operad to be the Barratt-Eccles operad, then the homology of Fn/Fn−1CX is easy to
understand in terms of the homology of X, and structure map CX → X can be used
to define homology operations.

We can now state the Approximation Theorem:

Theorem 3.3. For the operads On of the Recognition Principle, 1 ≤ n ≤ ∞, there
is a natural map of On-spaces

αn : CnX → ΩnΣnX

which is a weak homotopy equivalence if X is connected.

Using Exercise 4 from last week and the structure maps for a monad, we can already
define the map αn. It is the composite

CnX
Cnηn−→ CnΩnΣnX

θn−→ ΩnΣnX,

where ηn is the unit of the monad ΩnΣn. In fact, we can say more about this morphism
of monads.
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It is easy to check that if F : C � C : G form an adjunction and C is a monad
in C, then FCG is a monad in C as well. With this in mind, we have the following
factorization of α.

Proposition 3.4. For n > 1, there is a morphism of monads βn : Cn → ΩCn−1Σ
such that αn = (Ωαn−1Σ)βn. Therefore αn factors as a composite of morphism of
monads

Cn → ΩCn−1Σ→ · · · → Ωn−1C1Σ
n−1 → ΩnΣn.

The proof is similar to the proof of Exercise 4 from Week 2 in the sense that
one must define βn explicitly by using the geometry of the little n-cubes and little
(n− 1)-cubes operads. We will leave the definition of this map and the proof of the
proposition for the exercises this week.

4. Proof of the Approximation Theorem

The Approximation Theorem follows from the following commutative diagram:

CnX EnX Cn−1ΣX

ΩnΣnX PΩn−1ΣnX Ωn−1ΣnX.

⊂

αn

πn

α̃n αn−1

⊂ P

Note that α0 is just the identity map. The properties of the diagram we need are the
following:

(1) The bottom row is just the path-loops fibration.
(2) There exist contractible spaces EnX, for all n ≥ 1, which make the diagram

commute.
(3) The map πn is a quasi-fibration with fiber CnX when X is connected.

The first and third properties say that we get long exact sequences in homotopy. The
contractibility in the second property says that the homotopy groups of EnX vanish.
The five lemma and induction on n then complete the proof. We will construct the
diagram in the remainder of the lecture. The proofs of the second two properties are
the content of Section 7 of May’s “The geometry of iterated loop spaces”.

Construction 4.1. We now define the functor En(−,−) from pairs of based spaces
to spaces; the space En(X) is defined to be En(cone(X), X). Let En(j;X,A) be the
subspace of On(j) × Xj consisting of all points (〈c1, . . . , cj〉, x1, . . . , xj) such that if
xr /∈ A, then the intersection in Jn of the sets (c′r(0), 1) × cr”(Jn−1) and cs(J

n) is
empty for all s 6= r. Here, the prime notation indicates we are thinking of cr as a
product c′r × cr” : Jn = J × Jn−1 → Jn. We then set

En(X,A) :=
⊕
j≥0

En(j;X,A)/ ∼,

where ∼ is the restriction of the equivalence relation in Construction 3.2. The topology
on En(X,A) is the subspace topology coming from the inclusion En(X,A) ↪→ CnX.
Note that there is also a map CnA ↪→ En(X,A).



5

If we apply En(−) to the pair (X, ∗), we can compare to Cn−1X via the following
map.

Proposition 4.2. There is a natural surjective based map vn : En(X, ∗) → Cn−1X
defined on [c, x] ∈ En(X, ∗) by

v1(c, x) = x ∈ X = C0X,

vn(c, x) = (c”, x) ∈ Cn−1X if n > 1.

If π : (X,A)→ (Y, ∗) is a map of pairs, then we can define πn to be the composite

En(X,A)
Enπ−→ En(Y, ∗) vn−→ Cn−1Y.

Applying this in the case π : (cone(X), X) → (ΣX, ∗), we obtain the top row of the
main commutative diagram:

CnX
⊂−→ En(TX,X)

πn−→ Cn−1ΣX.

There is a map
η̃n : TX → PΩn−1ΣnX,

defined by setting
[η̃n(x, s)](t)(v) = [x, st, v]

for [x, s] ∈ TX, t ∈ I, and v ∈ Sn−1. Applying En(−) to both sides of η̃n, we obtain
a commutative diagram

CnX EnX Cn−1ΣX

CnΩnΣnX En(PΩn−1ΣnX) Cn−1Ω
n−1ΣnX.

⊂

Cnηn

πn

En(η̃n) Cn−1ηn−1

⊂ P

We can obtain the main commutative diagram from this by composing the left and
right vertical arrows with θn and θn−1, respectively. The only remaining step is to
produce the middle vertical arrow. This follows from the following lemma.

Lemma 4.3. Define

θ̃n,j : En(j;PΩn−1X,ΩnX)→ PΩn−1X

as follows. Let (c, γ) ∈ En(j;PΩn−1X,ΩnX) where c = 〈c1, . . . , cj〉 and γ = (γ1, . . . , γj).
For t ∈ I and v ∈ Sn−1, define

θ̃n,j(c, γ)(t)(v) =


γr(s)(u) if cr(s, u) = (t, v),

γr(1)(u) if t ≥ c′r(1), cr”(u) = v, γr /∈ ΩnX,

∗ else.

Then the maps θ̃n,j assemble into a map θ̃n such that composition with Enη̃n defines
the map α̃n making the main diagram commute.


