Operads and Loop Space Machinery Seminar

Week 3: Exercises

J.D. Quigley

- (1) Show that the category of endofunctors of \mathcal{C} is a monoidal category.
- (2) Let $F : \mathcal{C} \hookrightarrow \mathcal{D} : G$ be an adjunction. Show that the composition $G \circ F : \mathcal{C} \to \mathcal{C}$ is a monad in \mathcal{C} .
- (3) Let \mathcal{O} be the Barratt-Eccles operad from last week, and let C be its associated monad from Construction 3.2. Let $X = S^1$ be the circle. What is $F_n CX$? Compute the mod 2 homology of the filtration quotient $F_2 CX/F_1 CX$.
- (4) Let $F : \mathcal{C} \to \mathcal{C} : G$ be an adjunction, and let C be a monad in \mathcal{C} . Show that FCG is a monad in \mathcal{C} .
- (5) For Proposition 3.4 of the lecture notes this week, we needed to define a map $\beta_n X : C_n X \to \Omega C_{n-1} \Sigma X$ such that $\alpha_n = (\Omega \alpha_{n-1} \Sigma) \beta_n$. Let $c \in \mathcal{O}_n(j)$, let $x \in X^j$, and let $t \in I$. Write $c_r = c'_r \times c_r$ " : $J \times J^{n-1} \to J^n$. Let r_1, \ldots, r_i , in order, denote the indices r such that $t \in c'_r(J)$. Define β_n by

$$[\beta_n(c,x)](t) = \begin{cases} * & \text{if } t \notin \bigcup_{r=1}^j c'_r(J), \\ (\langle c_{r_1}, \dots, c_{r_i}, \rangle, (x_{r_1}, s_1), \dots, (x_{r_i}, s_i)) & \text{if } c'_{r_q}(s_q) = t, 1 \le q \le i, \\ & \text{and } t \notin c'_r(J) \text{ for } r \notin \{r_q\}. \end{cases}$$

- (a) Show that β_n is well-defined and continuous.
- (b) Show that $\Omega \alpha_{n-1} \Sigma \circ \beta_n = \alpha_n : C_n X \to \Omega^n \Sigma^n X.$
- (c) Show that β_n is a morphism of monads.
- (6) Read Section 7 of May's "The geometry of iterated loop spaces".