Problems

Jens Jakob Kjaer

September 27, 2017

1. Show that $\left(S^{i}\right)_{h \Sigma_{2}}^{\wedge 2} \simeq \Sigma^{i}\left(\mathbb{R} P^{\infty} / \mathbb{R} P^{i-1}\right)$.
2. Let X be an E_{∞}-algebra, and let $e_{i} \in H_{i}\left(\mathbb{R} P^{\infty}\right)$ be a generator. Show that the diagonal map $B \Sigma_{2+} \wedge X \rightarrow E \Sigma_{2+} \wedge \Sigma_{2} X^{\wedge 2}$, composed with the structure map for X takes $e_{i} \otimes x \in H_{*}\left(\mathbb{R} P^{\infty}\right) \otimes H_{*}(X) \simeq H_{*} B \Sigma_{2+} \wedge$ $X^{\wedge 2}$ to $Q^{i}(x) \in H_{*}(X)$.
3. Calculate $H_{*}\left(\left(S^{i}\right)_{h \Sigma_{k}}^{\wedge k} ; \mathbb{Q}\right)$, conclude that the only rational Dyer-Lashof operations are $x \mapsto x^{k}$ for all k.
4. Calculate $H_{*}\left(\left(S^{i}\right)_{h \Sigma_{p}}^{\wedge p} ; \mathbb{F}_{p}\right)$ for odd primes p, conclude that we have odd primary Dyer-Lashof operations $\beta^{\epsilon} Q^{i}: H_{*}(X) \mapsto H_{*+2(p-1) i-\epsilon}(X)$ for $\epsilon=0,1$, and X an E_{∞} space.
5. Show that $\left(X_{h G}^{\wedge|G|}\right)_{h G^{\prime}}^{\wedge\left|G^{\prime}\right|} \simeq X_{h G^{\prime} \backslash G}^{\wedge|\cdot| G^{\prime} \mid}$ for any finite groups G, G^{\prime} with G acting on $X^{|G|}$ by permuting the copies.
6. (a) Use the fact that there is a model for E_{n+1}-algebra, \mathcal{E}_{n+1}, with $\mathcal{E}_{n+1}(2)=E \Sigma_{2}^{(n)}$, where ()$^{(n)}$ is the n 'th skeleta, to define the operation

$$
\lambda_{n}: H_{i}\left(X ; \mathbb{F}_{2}\right) \otimes H_{j}\left(X ; \mathbb{F}_{2}\right) \rightarrow H_{i+j+n}\left(X ; \mathbb{F}_{2}\right)
$$

for X an E_{n+1}-algebra, such that $\lambda_{0}(x, y)=x y-y x$, and $\lambda_{n}=0$ if X is an E_{n+2}-algebra.
(b) Show that X an E_{n+1}-algebra, show that we have Dyer-Lashof operations $Q^{i}: H_{s}\left(X ; \mathbb{F}_{2}\right) \rightarrow H_{s+i}\left(X ; \mathbb{F}_{2}\right)$ for $i-s<n$.
7. Use the Snaith Splitting $\Sigma^{\infty} \Omega^{\infty} \Sigma^{\infty}(X) \simeq \Sigma^{\infty} \bigvee_{i} X_{h \Sigma_{i}}^{\wedge i}$ to give a complete calculation of $H_{*}\left(\Omega^{\infty} \Sigma^{\infty}(X) ; \mathbb{F}_{2}\right)$ for X a finite CW-complex.
8. Show that $(E \wedge X)_{h \Sigma_{k}}^{\wedge^{k}} \simeq E \wedge X_{h \Sigma_{k}}^{\wedge k}$ for any structured, commutative, ring spectrum E and any spectrum X. Use this to conclude that given $\alpha \in E_{i}(X)$ we get a map $\mathcal{P}(\alpha): E_{*}\left(S_{h \Sigma_{k}}^{k i}\right) \rightarrow E_{*}\left(X_{h \Sigma_{k}}^{\wedge k}\right)$.

