Exercises

Tim Campion

October 5, 2017

Exercise 1. H^d_{∞} ring spectra and graded ring spectra.

- 1. Define a graded object in a symmetric monoidal category C enriched in spaces (the examples we have in mind are C = chain complexes or spectra), and the tensor product of graded objects to define a symmetric monoidal category of graded objects $C^{\mathbb{Z}}$.
- 2. Write down the structure maps and equations between them for an E_{∞} / H_{∞} object in $C^{\mathbb{Z}}$. Simplify your answer.
- 3. Let $\mathcal{R} = (R_i)_{i \in \mathbb{Z}}$ be an H^d_{∞} object in $\mathcal{C}^{\mathbb{Z}}$. Assume that
 - (a) There are equivalences $R_i \simeq \sigma^{di} R$ (where $R = R_0$) for each $i \in \mathbb{Z}$.
 - (b) If $\mu_{i,j}: R_i \otimes R_j \to R_{i+j}$ is the multiplication, then $\Sigma^{i+j}\mu_{0,0} = \mu_{i,j}$ for all i, j.

Show that the R is an H^d_{∞} object in C.

- 4. Show that if we use the commutative operad instead of the E_{∞} operad throughout, then these conditions are satisified if and only if R is a commutative monoid and $\mathcal{R} = R[t^{\pm}]$ is the Laurent polynomial ring over R on a generator in degree d.
- 5. Conclude that if R is a commutative ring, then HR is an H^2_{∞} ring spectrum. What facts do we need that we haven't yet shown?