
Geometric Group Theory

Week 1

1 What is geometric group theory?

Geometric group theory is a collection of tools used to study algebraic properties of
groups by examining the spaces on which they act. It is an extremely wide area of
mathematics, pulling concepts from all over geometry, topology, and algebra. The
essence of geometric group theory is best understood with a sample tool:

Proposition 1. If a group G acts freely by isometries on Rn, then G is torsion-free.

Proof. Suppose that g ∈ G has finite order m. Choose v ∈ Rn, and consider the orbit
O of v under g:

O = {v, g · v, g2 · v, . . . , gm−1 · v}.

Let w ∈ Rn be the centroid of O (Potential Exercise: prove every finite collection of
points in Rn has a centroid). Then, we have

g · O = {g · v, g2 · v, . . . , gm · v = v} = O.

This, along with the fact that G acts by isometries, implies that g ·w = w. Since the
action is free, it must be that g = id. So, we have shown that the only finite order
element of G is the identity, and so G is torsion-free.

In this example, the algebraic property we were concerned about was torsion.
However, there are a myriad of other properties one may be interested in. Some of
these properties include:

• Torsion

• Free

• Finiteness properties

– Finitely generated/presented

– Cohomological dimension

– Type F , FP , FL, FH, FA
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• “Virtual” properties

For the rest of today, we will talk about a particular one of these examples –
namely, free groups. Let’s start with the definition:

Definition 1. The free group on n generators x1, x2, . . . , xn, denoted Fn consists of
all finite words of the form

sk11 sk22 · · · skmm
where s1, . . . , sm ∈ {x1, . . . , xm} and k1, . . . , km ∈ Z \ {0}. The group operation is
concatenation of words.

Free groups are perhaps the most fundamental groups since every group is a quo-
tient of a free group (this is essentially what we mean when we write the presentation
of a group). However, it is in general difficult to tell when a group we encounter in
the wild is free. Here’s an example that hopefully convinces the reader:

Example 1. Let m ≥ 3 and consider the projection p : SL(2,Z) → SL(2,Z/mZ)
given by reducing each entry modulo m. The kernel of this projection is called
the level m congruence subgroup of SL(2,Z), and is denoted SL(2,Z)[m]. Perhaps
surprisingly, it turns out that SL(2,Z)[m] is free. By the end of the lecture, we
should have the tools necessary to justify this.

So, it may be useful to have some tools we can use to tell whether or not a given
group is free. The rest of the lecture will be dedicated to constructing these tools.

2 Tools

Proposition 2 (Ping-Pong Lemma). Suppose a group G is generated by the set
{g1, . . . , gn} and acts on a set X. If

(a) there are nonempty, pairwise-disjoint subsets X1, . . . , Xn ⊆ X, and

(b) gki (Xj) ⊆ Xi for all k 6= 0 and i 6= j,

then G is a free group of rank n.

Proof. The idea will be to show that all nontrivial freely reduced words in the gi’s
represent nontrivial elements of G. This is sufficient because then G cannot possibly
have any relations (i.e. G is free is relations). Let w be a nontrivial freely reduced
word in the gi’s. We will consider two cases:

• Case 1: Suppose w is of the form g∗1sg
∗
1, where the stars represent a nontrivial

power and s is some word in the gi’s. Then, for any x2 ∈ X2, we have w ·x2 ∈ X1

by property (b). Since X1 and X2 are disjoint, we have w · x2 6= x2, and so w
must be nontrivial.
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• Case 2: Suppose the w is not of the form g∗1sg
∗
1. Then w is conjugate to an

element of this form (conjugate by g1), which is nontrivial by Case 1. Since w
is conjugate to a nontrivial element, it must be nontrivial itself.

Applying the Ping-Pong Lemma can be tricky (you have to find a suitable set X
and subsets X1, . . . , Xn), but we will give an example of such an application.

Example 2. Consider the subgroup

A =

〈(
1 2
0 1

)
,

(
1 2
0 1

)〉
⊆ SL(2,Z)

which acts on Z2 by matrix multiplication. Let

X1 =

{(
x
y

)
∈ Z2 : |x| > |y|

}
and X2 =

{(
x
y

)
∈ Z2 : |x| < |y|

}
.

Then, for k 6= 0 and

(
x
y

)
∈ X2, we have

(
1 2
0 1

)k (
x
y

)
=

(
1 2k
0 1

)(
x
y

)
=

(
x + 2ky

y

)
.

Since k 6= 0 and |x| < |y|, it follows that |y| < |x + 2ky|. So,

(
x + 2ky

y

)
∈ X1.

Almost exactly the same argument shows that(
1 0
2 1

)k (
x
y

)
∈ X2

for all

(
x
y

)
∈ X1. Therefore, by the Ping-Pong Lemma,

〈(
1 2
0 1

)
,

(
1 2
0 1

)〉
is a free

group of rank 2.

The Ping-Pong Lemma has a couple limitations from our perspective. The first,
that we’ve noted already, is that finding good choices for X can be difficult. The
second is that the Ping-Pong Lemma doesn’t really utilize any geometric information
of the action; X is simply a set. So, if we let G act on a space, we should be able to
get some stronger (and more easily applicable!) results. The simplest spaces on which
groups can act are graphs, and particularly trees. So what can be said regarding the
free groups and the action of groups on trees? We have the following classical theorem
in geometric group theory:

Theorem 1. If a group G acts freely on a tree T , then G is a free group.
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Proof. Our method is going to be to find nice tiling of T . By a tile, we mean a subtree
of the barycentric subdivision T ′ of T , and by a tiling of T , we mean a collection of
tiles such that

• No two tiles share an edge, so two tiles can only intersect in at most one vertex
of T ′.

• The union of the tiles is all of T ′.

• There is a tile T0 such that every tile is of the form g · T0 for some g ∈ G.

The experienced reader will recognize T0 as a “fundamental domain” for the action
of G on T ′.

• Step 1: Tile the tree T .
Fix a vertex v ∈ T . For g ∈ G, let Tg be the subtree of T ′ spanned by vertices
w ∈ T ′ satisfying d(x, gv) ≤ d(w, g′v) for all g′ ∈ G. Exercise: Show that {Tg}
is a good tiling.

• Step 2: Find a generating set.
Let S = {g ∈ G : (gTid) ∩ Tid 6= ∅}. We will show that S generates G. Let
g ∈ G. Since T is connected, there is a path from v to gv. Suppose this path goes
through the tiles Tg0 , Tg1 , . . . , Tgm (in that order), where g0 = id and gm = g.
Let si = g−1i−1gi. Since the path goes from Tgi−1

to Tgi , Tgi−1
∩Tgi = {∗}. Hitting

both sides with g−1i−1, we get Tid ∩ Tg−1
i−1gi

= {∗}. Therefore, si = g−1i−1gi ∈ S.

Finally, we notice that g = s1s2 · · · sm, which completes the proof.

• Step 3: Show S is a free generating set for G.
Let g = s1s2 · · · sm, where si ∈ S. We can find a path in T ′ from v to gv passing
through the tiles

Tid, Ts1 , Ts1s2 , Ts1s2s3 , . . . , Ts1s2·sm = Tg.

Moreover, this path is unique since T ′ is a tree. Therefore, the decomposition
g = s1s2 · · · sm is also unique since a different decomposition would give a
different path from v to gv. Thus, S is a free generating set for G.

The ideas used in this proof are used frequently throughout geometric group the-
ory: connectedness of the space allows you to find a path and generating set, and
uniqueness of the path allows you to say something about uniqueness of the decom-
position.

It turns out that the converse of this theorem is also true; that is, every free
group acts freely on a tree. This follows because the Cayley graph of a free group
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is a tree (we will discuss this next week). Therefore, this we have found a complete
classification of free groups!

Finally, we note that, if a group acts freely on a tree, then any subgroup also acts
freely on that tree. Therefore, we get the following corollary:

Corollary 1. Every subgroup of a free group is free.

This may seem obvious, but it is actually quite nontrivial to prove using purely
algebraic or combinatorial methods. This is just one example of geometric methods
giving nontrivial results in algebra.

Intrestingly enough, the rank of a free group does not respect subgroups. For
instance, the subgroup

〈bab−1, b2ab−2, b3ab−3, . . .〉 ⊆ F2

is a free group of infinite rank.
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