Problem 1. Let G be the group of isometries of \mathbb{D}^{n}, and let Γ, Γ^{\prime} be isomorphic discrete cocompact subgroups. Show that there exists a $g \in G$ such that $\Gamma=g \Gamma^{\prime} g^{-1}$. (This is sometimes called the algebraic form of Mostow Rigidity.)

Problem 2. Let $\phi: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ be a quasi-isometry from the open n-disk to itself in the hyperbolic metric. Recall that we've shown that such a ϕ extends to a function $\bar{\phi}: S^{n-1} \rightarrow$ S^{n-1}, where for $P \in \partial \mathbb{D}^{n}$: we define $\bar{\phi}(P)$ by looking at the geodesic which is finite distance the image of the a geodesic ray originating at P.

Show that $\bar{\phi}$ is continuous.

Problem 3. This problem has a bunch of exposition. The actual problems are the three propositions at the end.

Recall that for any two simply connected domains in \mathbb{C}, there is a holomorphic map from one to the other with holomorphic inverse. Furthermore, holomorphic maps are conformal (to be defined in a moment). Thus, there are lots of conformal maps in dimension 2. In contrast, in this theorem we'll prove the following:

Theorem 1 (Liouville's Theorem). Let $f: U \rightarrow U^{\prime}$ be a diffeomorphism between domains in \mathbb{R}^{n}, for $n \geq 3$. If f is conformal, then it is a composition of reflections and inversion through spheres.

Remark 1. It is not necessary to assume f is smooth with smooth inverse - I believe just f being C^{2} is enough - but it simplifies things.

Definition 1. Let $U \subseteq \mathbb{R}^{n}$ be a domain (an open connected subset) and let $f: U \rightarrow \mathbb{R}^{m}$ be a smooth map which is a diffeomorphism onto its image. Then f is conformal if for all $p \in U$, there is a constant $\alpha(p) \in \mathbb{R}_{>0}$ depending smoothly on p such that for all $v, w \in T_{p} U$,

$$
\left\langle d f_{p}(v), d f_{p}(w)\right\rangle=\alpha(p)^{2}\langle v, w\rangle .
$$

Intuitively, the independence of $\alpha(p)$ on v and w means f preserves angles. Here we equip \mathbb{R}^{n} with the Euclidean metric. The squared is there to compare with $d f_{p}(v)=\alpha(p) v$. As function $U \rightarrow \mathbb{R}, \alpha$ can't be just anything. We take the following lemma without proof.

Lemma 1. Let f be conformal, and $\alpha: U \rightarrow \mathbb{R}$ as above. If α isn't constant, then for each $p \in U$, the Hessian matrix

$$
\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(\frac{1}{\alpha}\right)\right)_{1 \leq i, j \leq n}
$$

is diagonal at each point $p \in U$.
Remark 2. This lemma is where dimension at least 3 is used. The Hessian is a symmetric bilinear form defined by the function, and the argument considers a certain alternating form $\Lambda^{3}\left(T_{p}\right) \rightarrow \mathbb{R}$, which needs that $\operatorname{dim} T_{p} \geq 3$ to be nontrivial.

By taking antideriviatves, we find find:

Corollary 1. There exist $x_{0} \in \mathbb{R}^{n}, A, B \in \mathbb{R}$ such that for all $p \in U \subseteq \mathbb{R}^{n}$.

$$
\alpha(p)=\frac{1}{A\left|p-x_{0}\right|^{2}+B} .
$$

Remark 3. When $n=2$ and $f: U \rightarrow \mathbb{C}$ is a holomorphic function, then $\alpha(z)=\left|f^{\prime}(z)\right|$, which can be many more things than the above.

Proposition 1. Either $A=0$ or $B=0$.
Proposition 2. If $A=0$, then f is a dilation around x_{0} plus a translation.
Proposition 3. If $B=0$, then f is an inveresion around x_{0}, then a dilation, then a translation

Problem 4. Let $\phi: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ be a quasi-isometry, and $h: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ be an isometry such that they both have the same extension to the boundary. Show that they are homotopic. Futhermore, show that if ϕ is a lift of a map $f: M \rightarrow N$ of compact hyperbolic manifolds, then this homopty can be chosen to descend to a homotopy of maps $M \rightarrow N$.

