
Problem 1. Let G be the group of isometries of Dn, and let Γ,Γ′ be isomorphic discrete
cocompact subgroups. Show that there exists a g ∈ G such that Γ = gΓ′g−1. (This is
sometimes called the algebraic form of Mostow Rigidity.)

Problem 2. Let φ : Dn → Dn be a quasi-isometry from the open n-disk to itself in the
hyperbolic metric. Recall that we’ve shown that such a φ extends to a function φ : Sn−1 →
Sn−1, where for P ∈ ∂Dn: we define φ(P ) by looking at the geodesic which is finite distance
the image of the a geodesic ray originating at P .

Show that φ is continuous.

Problem 3. This problem has a bunch of exposition. The actual problems are the three
propositions at the end.

Recall that for any two simply connected domains in C, there is a holomorphic map from
one to the other with holomorphic inverse. Furthermore, holomorphic maps are conformal
(to be defined in a moment). Thus, there are lots of conformal maps in dimension 2. In
contrast, in this theorem we’ll prove the following:

Theorem 1 (Liouville’s Theorem). Let f : U → U ′ be a diffeomorphism between domains
in Rn, for n ≥ 3. If f is conformal, then it is a composition of reflections and inversion
through spheres.

Remark 1. It is not necessary to assume f is smooth with smooth inverse - I believe just f
being C2 is enough - but it simplifies things.

Definition 1. Let U ⊆ Rn be a domain (an open connected subset) and let f : U → Rm

be a smooth map which is a diffeomorphism onto its image. Then f is conformal if for all
p ∈ U , there is a constant α(p) ∈ R>0 depending smoothly on p such that for all v, w ∈ TpU ,

〈dfp(v), dfp(w)〉 = α(p)2〈v, w〉.

Intuitively, the independence of α(p) on v and w means f preserves angles. Here we
equip Rn with the Euclidean metric. The squared is there to compare with dfp(v) = α(p)v.
As function U → R, α can’t be just anything. We take the following lemma without proof.

Lemma 1. Let f be conformal, and α : U → R as above. If α isn’t constant, then for each
p ∈ U , the Hessian matrix (

∂2

∂xi∂xj

(
1

α

))
1≤i,j≤n

is diagonal at each point p ∈ U .

Remark 2. This lemma is where dimension at least 3 is used. The Hessian is a symmetric
bilinear form defined by the function, and the argument considers a certain alternating form
Λ3(Tp)→ R, which needs that dimTp ≥ 3 to be nontrivial.

By taking antideriviatves, we find find:
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Corollary 1. There exist x0 ∈ Rn, A,B ∈ R such that for all p ∈ U ⊆ Rn.

α(p) =
1

A|p− x0|2 +B
.

Remark 3. When n = 2 and f : U → C is a holomorphic function, then α(z) = |f ′(z)|,
which can be many more things than the above.

Proposition 1. Either A = 0 or B = 0.

Proposition 2. If A = 0, then f is a dilation around x0 plus a translation.

Proposition 3. If B = 0, then f is an inveresion around x0, then a dilation, then a
translation

Problem 4. Let φ : Dn → Dn be a quasi-isometry, and h : Dn → Dn be an isometry such
that they both have the same extension to the boundary. Show that they are homotopic.
Futhermore, show that if φ is a lift of a map f : M → N of compact hyperbolic manifolds,
then this homopty can be chosen to descend to a homotopy of maps M → N .
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