GSTS Problem Session

Week 1

- 1. Show that the collection $\{T_g\}$ constructed last week is indeed a tiling.
- 2. Recall that the level *m* congruence subgroup of $SL(2, \mathbb{Z})$ is defined as

$$\operatorname{SL}(2,\mathbb{Z})[m] := \operatorname{ker}(\operatorname{SL}(2,\mathbb{Z}) \to \operatorname{SL}(2,\mathbb{Z}/m\mathbb{Z})).$$

The goal of this exercise is to show that $SL(2,\mathbb{Z})[m]$ is free for $m \geq 3$. We will accomplish this by finding a tree on which $SL(2,\mathbb{Z})[m]$ acts freely.

The Farey Tree. We say that a pair $(m, n) \in \mathbb{Z}^2$ is primitive if gcd(|m|, |n|) = 1. Define an equivalence relation \sim on the set of primitive elements of \mathbb{Z}^2 by setting $(m, n) \sim -(m, n)$. The Farey graph is the the graph with vertex set

 $\{(m,n) \in \mathbb{Z}^2 : (m,n) \text{ is primitive}\}/\sim$

and two vertices $\pm(m, n)$ and $\pm(m', n')$ are connected by an edge if

Figure 1: The Farey Graph

Form the *Farey Complex* by taking the Farey Graph and "filling in all the triangles". Finally, we define the *Farey Tree* to be the graph with vertex set consisting of triangles and edges of the Farey Complex and edges corresponding to inclusions of edges into triangles.

Figure 2: The Farey Tree

- (a) Show that $SL(2,\mathbb{Z})$ acts on the Farey tree.
- (b) What are the vertex/edge stabilizers of this action?
- (c) Conclude that $SL(2, \mathbb{Z})[m]$ is free for $m \geq 3$.