GSTS Problem Session

Week 2

- 1. Recall that a quasi-inverse of a function $f: X \to Y$ is a function $g: Y \to X$ such that there is some $k \ge 0$ such that $d_X(g(f(x))) \le k$ for all $x \in X$ and $d_Y(f(g(y))) \le k$ for all $y \in Y$.
 - (a) Show that a map $f: X \to Y$ is a quasi-isometry if and only if f has a quasi-inverse.
 - (b) Show that a quasi-inverse of a quasi-isometry is also a quasi-isometry.
- 2. Let G be a finitely generated group with finite generating set S. For any subset A of vertices of $\Gamma(G, S)$, define the S-boundary of A by

 $\partial_S A = \{g \in G \mid g \notin A \text{ and } d_S(g, a) = 1 \text{ for some } a \in A\}.$

We say that G is S-amenable if for any $\varepsilon > 0$, there is some finite subset A of vertices of $\Gamma(G, S)$ such that $|\partial_S A| < \varepsilon |A|$.

- (a) Show that \mathbb{Z} is both $\{1\}$ -amenable and $\{2,3\}$ -amenable.
- (b) Show that any finite group G is S-amenable for any finite generating set S.
- (c) Suppose G_1 and G_2 are finitely generated groups with finite generating sets S_1 and S_2 . Show that if G_1 is S_1 -amenable and G_2 is S_2 -amenable, then $G_1 \times G_2$ is S-amenable, where

 $S = \{ (s_1, id_{G_2}) \mid s_1 \in S_1 \} \cup \{ (id_{G_1}, s_2) \mid s_2 \in S_2 \}.$

- (d) Let G be a finitely generated group with finite generating sets S and S'. Show that G is S-amenable if and only if G is S'-amenable. Thus, it makes sense to say a finitely generated group is *amenable* if it is S amenable for any finite generating set S.
- (e) Show that all finitely generated abelian groups are amenable.
- (f) Show that F_2 is not amenable.
- (g) Suppose that G and H are quasi-isometric finitely generated groups. Show that G is amenable if and only if H is amenable.

Note: These exercises were taken from Office Hour Seven of Office Hours with a Geometric Group Theorist by Clay and Margalit.