
Geometric Group Theory

Week 3

Hyperbolic Groups

The topic of this lecture is going to be hyperbolic groups. When you first read “hyper-
bolic groups”, you probably first thought of hyperbolic space. The two are, perhaps
not so surprisingly, related. We first point out a key feature of hyperbolic space:
geodesic triangles in hyperbolic space are “thin”.

Before we delve further into what “thin” means for triangles in hyperbolic space,
let’s take a look at an extreme example – trees. As seen below, geodesic triangles in
trees are (perhaps degenerate) tripods.

Consider a geodesic triangle in a tree with sides α, β, γ. Notice that α∪β ⊇ γ, and
similarly for the other arrangements of α, β, γ. This is going to be our motivation for
the “thinness” of triangles in a metric space. Of course, we don’t want to require that
one side of a geodesic triangle be contained in the union of the other two, otherwise
geodesic triangles in hyperbolic space would not be thin. We would however, like this
to be almost true.
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Definition 1. A geodesic triangle with sides α, β, γ in a metric space is δ-thin if
Nδ(α ∪ β) ⊇ γ, Nδ(α ∪ γ) ⊇ β, and Nδ(β ∪ γ) ⊇ α, where Nδ(U) denotes the closed
δ-neighborhood of U .

Now that we have defined what it means for triangles to be thin, we can define
what it means for spaces to be hyperbolic.

Definition 2. A (geodesic) metric space is δ-hyperbolic if all geodesic triangles are
δ-thin.

Example 1. (a) Trees are 0-hyperbolic.

(b) Hyperbolic space H2 is δ-hyperbolic for some δ ≥ 0 (what is the best δ?).

(c) R2 is not δ-thin for any δ ≥ 0.

Note that our definition of δ-hyperbolicity relies on the metric space being geodesic.
However, there are several other equivalent definitions of δ-hyperbolic (Gromov’s four-
point condition) that only uses the metric, not geodesic triangles. There are many
other equivalent definitions as well (for instance, the insize definitions). The problem
with comparing these definition’s is that the δ is not consistent throughout all defini-
tions. It is true, however, that if a metric space X is δ-hyperbolic for one definition,
then for any of the other definitions, X will be δ′-hyperbolic for some δ′ ≥ 0. To
compensate for this disparity, we make the following definition.

Definition 3. A metric space is hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

Now, a space being hyperbolic does not depend on which definition one uses for
δ-hyperbolic. Moreover, hyperbolicity is also preserved under quasi-isometry.

Theorem 1. Suppose X and Y are quasi-isometric metric spaces. If X is hyperbolic,
then Y is also hyperbolic.

We won’t be proving this theorem, however it should seem reasonable: if X is
δ-hyperbolic and Y is quasi-isometric to X, then we should be able to find some δ′

depending on δ and the error terms K and C from the quasi-isometry such that Y is
δ′-hyperbolic.

Note that, with the theorem, the following definition is unambiguous.

Definition 4. A group is hyperbolic if any of its Cayley graphs are.

Example 2. (a) Free groups are hyperbolic.

(b) Finite groups are hyperbolic.

(c) Z2 is not hyperbolic.
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Further Examples of Hyperbolic Groups

Special Linear Group

The examples we have seen so far have been somewhat trivial. So, let’s see some
more interesting examples. The first we will discuss is PSL(2,Z) and SL(2,Z).

Recall that PSL(2,Z) = SL(2,Z)/{±I}. Notice that PSL(2,Z) also acts on the
Farey Tree (discussed in the first problem session). However, the vertex stabilizers
will no longer be trivial. They will, however, be finite. Using a similar technique to
the one we used to prove groups acting freely on trees are free, one can show that
groups acting on trees with finite vertex stabilizers are isomorphic to a free product.
That idea can be applied here to show that

PSL(2,Z) ∼= 〈a, b | a2, b3〉 ∼= Z/2Z ∗ Z/3Z,

where a =

(
0 −1
1 0

)
and b =

(
0 −1
1 1

)
. So, the Caley graph of PSL(2,Z) with

respect to the generating set {a, b} is:

· · ·

· · ·

· · ·

· · ·

Notice that this looks like a tree, except with all the vertices replaced by trian-
gles. One can show that this graph is 1-hyperbolic (check by drawing some trian-
gles). Thus, PSL(2,Z) is hyperbolic! Moreover, PSL(2,Z) and SL(2,Z) differ by
finite groups (PSL(2,Z) is the quotient of SL(2,Z) by a finite group). Therefore, by
Milnor-Schwarz, PSL(2,Z) and SL(2,Z) are quasi-isomorphic, and thus SL(2,Z) is
also hyperbolic.

Surface Groups

The final example we will discuss are surface groups (fundamental groups of closed
surfaces). Recall that, for the closed surface of genus g, denoted Σg, we have

π1(Σg) = 〈a1, b1, a2, b2, . . . , ag, bg | [a1, b1][a2, b2] · · · [ag, bg]〉.
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For g = 1, we have π1(Σ1) = π1(T
2) = Z2, which we already have seen is not

hyperbolic. However, we claim that the rest are.

Theorem 2. The surface groups π1(Σg) are hyperbolic for g ≥ 2.

Proof. The method of proof will rely on covering spaces. We will discuss the proof in
the g = 1 case first, and then translate to g ≥ 2.

Recall that the universal cover of Σ1 = T 2 is R2. In other words, Σ1 = R2/Z2,
where Z2 acts on R2 by integer translations vertically and horizontally. A fundamental
domain for this action is the square S with vertices (0, 0), (1, 0), (1, 1), and (0, 1). We
see that this action is:

• by isometries,

• cocompact, since R2/Z2 = Σ1 is compact, and

• properly discontinuous, since only 8 translations of S intersect S.

Therefore, by Milnor-Schwarz, π1(Σ1) = Z2 is quasi-isometric to R2, which again
shows that Z2 is not quasi-isometric.

In the g ≥ 2 case, we now have that the universal cover is H2. Using the process
above, we will show that π1(Σg) is quasi-isometric to H2. We will focus on the g = 2
case, but the other cases are similar.

For g = 2, we have that Σ2 = H2/π1(Σ2). A fundamental domain for this action
is an octagon:

It is clear that this action is still by isometries, cocompact, and properly discon-
tinuous. Therefore, by Milnor-Schwarz, π1(Σ2) is quasi-isometric to H2. The same
argument works for g > 2, except instead of an octagon in the universal cover, you
will have a (4g)-gon.
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The Word Problem

We will finish by discussing an actual algebraic property of hyperbolic groups –
namely, that they have a solvable word problem. Recall the word problem for a
group G: given a presentation for G and a word w in the generators of this presenta-
tion, is there a finite time algorithm to determine if w represents the trivial element
of G?

A common method, introduced by Dehn, to show that groups have solvable word
problem is to show that they admit a special type of presentation, called a Dehn
presentation.

Definition 5. A finite presentation G = 〈a1, a2, . . . , an | r1, r2, . . . , rk〉 is a Dehn
presentation if the following conditions hold:

(a) There exist string u1, v1, u2, v2, . . . , uk, vk in the aj such that ri = uiv
−1
i for all i

(this just says that ui and vi represent the same element of G).

(b) The word length of vi is strictly less than the word length of ui.

(c) For any nontrivial reduced word w representing the identity in G, ui or u−1i
appears as a substring for some i.

We note that the existence of such a presentation solves the word problem as
follows: given some nontrivial word w in the ai,

• By (c), if w does not contain any ui or u−1i then w does not represent the identity
element of G.

• If w does contain some ui or u−1i , replace this string with vi or v−1i . By (a),
this does not change the element of G represented by w. By (b), this makes w
shorter.

• Repeat until w no longer contains any ui or u−1i as a substring or you get to
the trivial word.

It may seem like these conditions (especially (c)) are very restrictive. It requires
that every string not representing the identity contains at least one of a finite list of
substring. Amazingly, one can show that hyperbolic groups do have Dehn presenta-
tions.

Theorem 3. Hyperbolic groups admit Dehn presentations.

Before we prove the theorem, we will require a techincal definition and lemma.

Definition 6. A path γ in a graph is an m-local geodesic if every subpath of length
m is a geodesic.
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For example the the path around the 8-circuit is a 4-local geodesic. These should
be though of as “almost geodesics”.

Lemma. There are no (8δ)-local geodesic loops of length greater then or equal to 8δ
in a δ-hyperbolic space.

We will not prove this lemma, but we can give an intuitive argument. In a
hyperbolic space, geodesics like to diverge out to infinity (for contrast, recall that
geodesics in positively curved manifolds such as the sphere tend to loop around on
themselves). Therefore, in a hyperbolic space, a loop cannot be very close to being a
geodesic, and this lemma quantifies just how far away from being a geodesic a loop
must be.

Proof of theorem. Let G be a hyperbolic group with finite generating set, and suppose
the Cayley graph of G with respect to S is δ-hyperbolic. Fix some integer K > 8δ.
Let R = {uiv−1i }, where

• ui ranges over all nonminimal words in S ∪ S−1 of length less than or equal to
K, and

• vi is a word of minimal length representing ui.

We first show that 〈S | R〉 is a presentation for G. It is clear by construction that all
elements of R are actual relations in G, so we only need to check that R includes all
the necessary relations. By the way we’ve constructed R, it will contain all relations
of length less than or equal to K. There is a relation r of length greater than K.
Then, by the lemma, the loop in the Cayley graph represented by r cannot be an
(8δ)-local geodesic. In particular, it contains a subpath of length at most 8δ which
is not a geodesic. This path is represented by one of the ui. Replace this ui with
the corresponding vi to get a strictly shorter loop (note, this corresponds to inserting
the relation u−1i vi into r). Repeat this process until you get a relation of length at
most K. By construction, this relation will be in R, and we can recover r from it
by inserting the corresponding uiv

−1
i ∈ R. Thus, r is redundant with R, and so

G = 〈S | R〉.
Now, we must check that G = 〈S | R〉 is a Dehn presentation. Condition (a) and

(b) are satisfied by the way we constructed R. For (c), suppose that w is a nontrivial
word in S ∪ S−1 and which represents the identity in G. If w has word length at
most K, then w ∈ R by construction, and so w contains some ui as a substring. If w
has word length greater than K, then the loop in the Cayley graph representing this
word cannot be an (8δ)-local geodesic. In particular, it contains a subpath of length
at most 8δ which is not a geodesic. This subpath corresponds exactly with one of our
ui.
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