GSTS Problem Session

Week 4

1. Let $G=\left\langle x, y \mid x^{3}=y^{2}\right\rangle$. Show that the map $f: G \rightarrow B_{3}$ generated by $f(x)=\sigma_{1} \sigma_{2}$ and $f(y)=\sigma_{1} \sigma_{2} \sigma_{1}$ is well-defined and an isomorphism.
2. Define the length homomorphism $\ell: B_{n} \rightarrow \mathbb{Z}$ as follows: if w is a word in the σ_{i} (and their inverses), let $\ell(w)$ be the sum of the exponents of the σ_{i} in w (e.g. $\left.\ell\left(\sigma_{1} \sigma_{2}^{2} \sigma_{3}^{-4}\right)=1+2-4=-1\right)$.
(a) Show that ℓ is well-defined.
(b) Recall from last week that we showed the abelianization of B_{n} is isomorphic to \mathbb{Z} for $n \geq 2$. Show that the map ℓ is the same as the abelianization map $B_{n} \rightarrow \mathbb{Z}$.
3. Show that all the σ_{i} are conjugate to each other. Draw a braid demonstrating this conjugacy.
4. Let $\delta=\sigma_{1} \sigma_{2} \sigma_{1}$ and $\gamma=\sigma_{2} \sigma_{1}^{-1}$.
(a) Show that $\delta \gamma \delta^{-1}=\gamma^{-1}$. In other words, γ is conjugate to its inverse.
(b) Show that if β is any braid conjugate to itself, then $\ell(\beta)=0$.
5. (a) Is $P B_{n}$ normal in B_{n} ?
(b) Calculate the index of $P B_{n}$ in B_{n}.
(c) Describe the subgroup $P B_{2} \leq B_{2} \cong \mathbb{Z}$.
(d) Show that the center of B_{n} is contained in $P B_{n}$ without using the fact that $Z\left(B_{n}\right)$ is generated by the "full-twist" braid.

Note: These exercises were taken from Office Hour 18 of Office Hours with a Geometric Group Theorist.

