GSTS Problem Solving Session

Week 5

1. Use the Cayley graph of the Klein bottle group $K=<x, y \mid x y=y^{-1} x>$ to show that $e(K)=1$. Begin by describing a path between elements $g, h \in \Gamma(K) \backslash C$ for some finite subgraph $C \subseteq \Gamma(K)$ and use that $\Gamma(K)$ contains multiple copies of the Cayley graph of \mathbb{Z}.
2. Let τ represent the standard Cayley graph of the free group on two generators and $\partial \tau$ denote the ends of \mathcal{T}. Show that given an end $e \in \partial \tau$, and a vertex $v \in \mathcal{T}$, there is a unique ray r in τ that represents e and is based at v.
3. Prove $\partial \tau$ is a totally disconnected, perfect compact metric space. This implies that $\partial \tau$ is homeomrophic to the Cantor set.
4. Give a definition for the ends of a general group G.
5. Choose your favorite infinite group G. Discuss the ends of this group and what properties they may have. State and attempt to prove a conjecture about the ends of G.
