Second (co)homology groups

Let G be a group. The purpose of this sheet is to prove the Hopf formula for H2(G, Z) and to give a
description of H?(G, A) in terms of group extensions. But before that let me recall some preliminaries
about resolutions.

Preliminaries

Let P, := Z[G]®™*Y be a G-module equipped with the diagonal G-action. Define the Z[G]-linear
homomorphism d,,: P,, = P,4+1 by the rule
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One can check that d,, od,_1 = 0 and that the sequence
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is a projective resolution of the trivial G-module Z.

Let Q, = Z[G] ®z Z|G]®" be the free Z|G]-module generated by the set G". Let denote an
element of the given basis of Q, by a symbol [g1|gz2|...|gs]. Define the Z[G]-linear homomorphism
dl,: Qn — Qpn—1 by the rule:
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Again, one can check that d/, od),_; = 0 and that the sequence
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is a projective resolution of the trivial G-module Z.
Problem 1. Construct a Z[G]-linear isomorphism between resolutions (P.,ds) and (Q.,d,).

Now define the subcomplex Dy C Q,. Let D,, be the free Z|G]-module generated by the elements
[91]g2] - - - |gn] such that g; = e € G for some 3.

Problem 2. Show that d,,(D,) C D,—_1. Show that the quotient complex Q./D, is a projective
resolution of the trivial G-module Z. This quotient complex is known as normalized bar complex.

Definition 1. Let A be a G-module. The n-th homology group H, (G, A) of the group G with
coefficient in A is H,,(Ps ®z(q) A) = Hn(Qe ®zi6] A). The n-th cohomology group H" (G, A) of the
group G with coefficient in A is H" (Homgq(Pe, A)) = H" (Homgz ) (Q, A)).

Problem 3. Show that H*(G, A) can be computed using the following chain complex (C",§™). Here
the group C™(G, A) is the abelian group of all functions ¢: G — A such that ¢(g1,...,9,) = 0 if
some g; = e € G. Define the differentials 6": C"~1(G, A) — C™(G, A) by the rule:
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Group Extensions

This section is devoted to give more down-to-earth description of H?(G, A) in terms of group extensions.

Definition 2. Let A be an abelian group and let G be a group. We say that a third group E is an
extension of G by A if there exists the short exact sequence:
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This means that i(A) is a normal subgroup of F and the kernel of p is precisely the group i(A).

Problem 4. Consider the E-action on A by conjugation. Show that this action is actually a G-action
(i.e. A C E acts trivially on A).

Definition 3. We say that extensions E and E’ of the group G by A are equivalent if there exists a
group isomorphism 3: E — E’ such that the following diagram commutes:
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Problem 5. Show that two equivalent extensions give the same G-action on A.

So now we fix a G-action on A and try to describe all group extension of G by A with the given
G-action up to equivalence.
We say a section 0: G — E of p, po = Idg, is based if it preserves the neutral element, o(e) = e.

Definition 4. The factor set associated with an extension E and a based section ¢ is the function
p: G x G — A given by the rule:

p(g.h) = o(g)a(h)(a(gh))~".
Problem 6. Show that a factor set is well-defined, i.e. (G x G) C A.

Problem 7. Let ¢ be the factor set associated with an extension E and a based section o. Let E’ be
an equivalent extension. Show that there exists a based section ¢’: G — E’ such that the associated
factor set coincides with .

Problem 8. A function ¢: G x G — A is a factor set if and only if ¢ € C%(G, A) and 63(¢) = 0.

Hint: show that bivalent operations on the set A x G that extend the multiplication on G by
the multiplication on A corresponds to functions from G x G to A. Then show that under this
correspondence the associativity turns into %(¢) = 0.

Problem 9. Let ¢ be the factor set associated with an extension F and a based section ¢ and let ¢
be the factor set associated with the same extension F but with a different based section ¢’. Show
that ¢ — 1 € Im(62). This means that there exists a function a: G — A, such that for all g,h € G-

©(g,h) —¥(g,h) = ga(h) — a(gh) + alg).

The three last problems show that we have a well-defined surjective map from the set of equivalence
classes of extensions to H2(G, A).

Problem 10. Show that this map is injective.



Hopf’s Formula
Suppose that the group G is given by a corepresentation G = %, where F' is a free group and R is
a normal subgroup of F. One can ask the question how to compute H,(G,Z) in terms of the given

corepresentation? Here we give the answer for this question when x = 1, 2.

Problem 11. Using the Hurewicz theorem H;(G,Z) = ﬁ, show that H,(G,Z) = ﬁ.

Problem 12. Suppose that F,, — F,,_1 — F,,_o — ... Fy — 7Z is an exact sequence such that all F;
are projective Z[GJ-modules. Show that

1. H;(G,Z) = H;(Fg) for all i < n;
2. There exists the exact sequence of abelian groups:

0— Hy1(G,Z) = Hy(F) = Hy(Fg) = Hy(G,Z) — 0.

The sequence F,, — F,,_1 — F,,_o — ... Fy — 7Z from the previous problem is called a partial
resolution of the trivial G-module Z.

Let Y be the wedge of circles such that m(Y) = F. Let Y be the covering of Y corresponding to
the normal subgroup R. Then G acts on Y and the complex of singular chains

C1(Y) = Co(Y) =0

is a partial resolution of Z. This means that Ho(G,Z) = ker(H1(Y)e — H1(Y)).

Problem 13. 1. Show that the F-action on R by conjugations induces the G-action on Rgp.
2. Show that Hl(f/) is isomorphic to Ry, as a G-module.
3. Show that (Rup)¢ = R/[F, R).

4. (Hopf’s theorem) Show that Hy(G,Z) = %-



