Second (co)homology groups

Let G be a group. The purpose of this sheet is to prove the Hopf formula for $H_{2}(G, \mathbb{Z})$ and to give a description of $H^{2}(G, A)$ in terms of group extensions. But before that let me recall some preliminaries about resolutions.

Preliminaries

Let $P_{n}:=\mathbb{Z}[G]^{\otimes(n+1)}$ be a G-module equipped with the diagonal G-action. Define the $\mathbb{Z}[G]$-linear homomorphism $d_{n}: P_{n} \rightarrow P_{n+1}$ by the rule

$$
d_{n}\left(g_{0} \otimes g_{1} \otimes \ldots \otimes g_{n}\right)=\sum_{i=0}^{n+1}(-1)^{i} g_{0} \otimes \ldots \otimes g_{i-1} \otimes \widehat{g}_{i} \otimes g_{i+1} \otimes \ldots \otimes g_{n+1}
$$

One can check that $d_{n} \circ d_{n-1}=0$ and that the sequence

$$
\ldots \xrightarrow{d_{n+1}} P_{n} \xrightarrow{d_{n}} P_{n-1} \xrightarrow{d_{n-1}} P_{n-2} \rightarrow \ldots
$$

is a projective resolution of the trivial G-module \mathbb{Z}.
Let $Q_{n}:=\mathbb{Z}[G] \otimes_{\mathbb{Z}} \mathbb{Z}[G]^{\otimes n}$ be the free $\mathbb{Z}[G]$-module generated by the set G^{n}. Let denote an element of the given basis of Q_{n} by a symbol $\left[g_{1}\left|g_{2}\right| \ldots \mid g_{n}\right]$. Define the $\mathbb{Z}[G]$-linear homomorphism $d_{n}^{\prime}: Q_{n} \rightarrow Q_{n-1}$ by the rule:

$$
\begin{aligned}
d_{n}^{\prime}\left[g_{1}\left|g_{2}\right| \ldots \mid g_{n}\right]=g_{1}\left[g_{2}|\ldots| g_{n}\right] & +\sum_{i=1}^{n-1}(-1)^{i}\left[g_{1}|\ldots| g_{i-1}\left|g_{i} g_{i+1}\right| \ldots \mid g_{n}\right] \\
& +(-1)^{n+1}\left[g_{1}|\ldots| g_{n-1}\right]
\end{aligned}
$$

Again, one can check that $d_{n}^{\prime} \circ d_{n-1}^{\prime}=0$ and that the sequence

$$
\ldots \xrightarrow{d_{n+1}^{\prime}} Q_{n} \xrightarrow{d_{n}^{\prime}} Q_{n-1} \xrightarrow{d_{n-1}^{\prime}} Q_{n-2} \rightarrow \ldots
$$

is a projective resolution of the trivial G-module \mathbb{Z}.
Problem 1. Construct a $\mathbb{Z}[G]$-linear isomorphism between resolutions $\left(P_{\bullet}, d_{\bullet}\right)$ and $\left(Q_{\bullet}, d_{\bullet}^{\prime}\right)$.
Now define the subcomplex $D_{\bullet} \subset Q_{\bullet}$. Let D_{n} be the free $\mathbb{Z}[G]$-module generated by the elements $\left[g_{1}\left|g_{2}\right| \ldots \mid g_{n}\right]$ such that $g_{i}=e \in G$ for some i.

Problem 2. Show that $d_{n}^{\prime}\left(D_{n}\right) \subset D_{n-1}$. Show that the quotient complex $Q_{\bullet} / D_{\bullet}$ is a projective resolution of the trivial G-module \mathbb{Z}. This quotient complex is known as normalized bar complex.

Definition 1. Let A be a G-module. The n-th homology group $H_{n}(G, A)$ of the group G with coefficient in A is $H_{n}\left(P_{\bullet} \otimes_{\mathbb{Z}[G]} A\right)=H_{n}\left(Q_{\bullet} \otimes_{\mathbb{Z}[G]} A\right)$. The n-th cohomology group $H^{n}(G, A)$ of the group G with coefficient in A is $H^{n}\left(\operatorname{Hom}_{\mathbb{Z}[G]}\left(P_{\bullet}, A\right)\right)=H^{n}\left(\operatorname{Hom}_{\mathbb{Z}[G]}\left(Q_{\bullet}, A\right)\right)$.

Problem 3. Show that $H^{*}(G, A)$ can be computed using the following chain complex $\left(C^{n}, \delta^{n}\right)$. Here the group $C^{n}(G, A)$ is the abelian group of all functions $\varphi: G^{n} \rightarrow A$ such that $\varphi\left(g_{1}, \ldots, g_{n}\right)=0$ if some $g_{i}=e \in G$. Define the differentials $\delta^{n}: C^{n-1}(G, A) \rightarrow C^{n}(G, A)$ by the rule:

$$
\begin{aligned}
\left(\delta^{n} \varphi\right)\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g_{1} \varphi\left(g_{2}, \ldots, g_{n}\right) & +\sum_{i=1}^{n-1}(-1)^{i} \varphi\left(g_{1}, \ldots, g_{i-1}, g_{i} g_{i+1}, \ldots, g_{n}\right) \\
& +(-1)^{n+1} \varphi\left(g_{1}, \ldots, g_{n-1}\right)
\end{aligned}
$$

Group Extensions

This section is devoted to give more down-to-earth description of $H^{2}(G, A)$ in terms of group extensions.
Definition 2. Let A be an abelian group and let G be a group. We say that a third group E is an extension of G by A if there exists the short exact sequence:

$$
0 \rightarrow A \xrightarrow{i} E \xrightarrow{p} G \rightarrow 1 .
$$

This means that $i(A)$ is a normal subgroup of E and the kernel of p is precisely the group $i(A)$.
Problem 4. Consider the E-action on A by conjugation. Show that this action is actually a G-action (i.e. $A \subset E$ acts trivially on A).

Definition 3. We say that extensions E and E^{\prime} of the group G by A are equivalent if there exists a group isomorphism $\beta: E \rightarrow E^{\prime}$ such that the following diagram commutes:

Problem 5. Show that two equivalent extensions give the same G-action on A.
So now we fix a G-action on A and try to describe all group extension of G by A with the given G-action up to equivalence.

We say a section $\sigma: G \rightarrow E$ of $p, p \sigma=\operatorname{Id}_{G}$, is based if it preserves the neutral element, $\sigma(e)=e$.
Definition 4. The factor set associated with an extension E and a based section σ is the function $\varphi: G \times G \rightarrow A$ given by the rule:

$$
\varphi(g, h)=\sigma(g) \sigma(h)(\sigma(g h))^{-1}
$$

Problem 6. Show that a factor set is well-defined, i.e. $\varphi(G \times G) \subset A$.
Problem 7. Let φ be the factor set associated with an extension E and a based section σ. Let E^{\prime} be an equivalent extension. Show that there exists a based section $\sigma^{\prime}: G \rightarrow E^{\prime}$ such that the associated factor set coincides with φ.

Problem 8. A function $\varphi: G \times G \rightarrow A$ is a factor set if and only if $\varphi \in C^{2}(G, A)$ and $\delta^{3}(\varphi)=0$.
Hint: show that bivalent operations on the set $A \times G$ that extend the multiplication on G by the multiplication on A corresponds to functions from $G \times G$ to A. Then show that under this correspondence the associativity turns into $\delta^{3}(\varphi)=0$.

Problem 9. Let φ be the factor set associated with an extension E and a based section σ and let ψ be the factor set associated with the same extension E but with a different based section σ^{\prime}. Show that $\varphi-\psi \in \operatorname{Im}\left(\delta^{2}\right)$. This means that there exists a function $\alpha: G \rightarrow A$, such that for all $g, h \in G$:

$$
\varphi(g, h)-\psi(g, h)=g \alpha(h)-\alpha(g h)+\alpha(g)
$$

The three last problems show that we have a well-defined surjective map from the set of equivalence classes of extensions to $H^{2}(G, A)$.

Problem 10. Show that this map is injective.

Hopf's Formula

Suppose that the group G is given by a corepresentation $G=\frac{F}{R}$, where F is a free group and R is a normal subgroup of F. One can ask the question how to compute $H_{*}(G, \mathbb{Z})$ in terms of the given corepresentation? Here we give the answer for this question when $*=1,2$.
Problem 11. Using the Hurewicz theorem $H_{1}(G, \mathbb{Z})=\frac{G}{[G, G]}$, show that $H_{1}(G, \mathbb{Z})=\frac{F}{R[F, F]}$.
Problem 12. Suppose that $F_{n} \rightarrow F_{n-1} \rightarrow F_{n-2} \rightarrow \ldots F_{0} \rightarrow \mathbb{Z}$ is an exact sequence such that all F_{i} are projective $\mathbb{Z}[G]$-modules. Show that

1. $H_{i}(G, \mathbb{Z}) \cong H_{i}\left(F_{G}\right)$ for all $i<n$;
2. There exists the exact sequence of abelian groups:

$$
0 \rightarrow H_{n+1}(G, \mathbb{Z}) \rightarrow H_{n}(F)_{G} \rightarrow H_{n}\left(F_{G}\right) \rightarrow H_{n}(G, \mathbb{Z}) \rightarrow 0
$$

The sequence $F_{n} \rightarrow F_{n-1} \rightarrow F_{n-2} \rightarrow \ldots F_{0} \rightarrow \mathbb{Z}$ from the previous problem is called a partial resolution of the trivial G-module \mathbb{Z}.

Let Y be the wedge of circles such that $\pi_{1}(Y) \cong F$. Let \tilde{Y} be the covering of Y corresponding to the normal subgroup R. Then G acts on \tilde{Y} and the complex of singular chains

$$
C_{1}(\tilde{Y}) \rightarrow C_{0}(\tilde{Y}) \rightarrow 0
$$

is a partial resolution of \mathbb{Z}. This means that $H_{2}(G, \mathbb{Z}) \cong \operatorname{ker}\left(H_{1}(\tilde{Y})_{G} \rightarrow H_{1}(Y)\right)$.
Problem 13. 1. Show that the F-action on R by conjugations induces the G-action on $R_{a b}$.
2. Show that $H_{1}(\tilde{Y})$ is isomorphic to $R_{a b}$ as a G-module.
3. Show that $\left(R_{a b}\right)_{G} \cong R /[F, R]$.
4. (Hopf's theorem) Show that $H_{2}(G, \mathbb{Z}) \cong \frac{R \cap[R, F]}{[F, F]}$.

