
Second (co)homology groups

Let G be a group. The purpose of this sheet is to prove the Hopf formula for H2(G,Z) and to give a
description of H2(G,A) in terms of group extensions. But before that let me recall some preliminaries
about resolutions.

Preliminaries

Let Pn := Z[G]⊗(n+1) be a G-module equipped with the diagonal G-action. Define the Z[G]-linear
homomorphism dn : Pn → Pn+1 by the rule

dn(g0 ⊗ g1 ⊗ . . .⊗ gn) =

n+1∑
i=0

(−1)ig0 ⊗ . . .⊗ gi−1 ⊗ ĝi ⊗ gi+1 ⊗ . . .⊗ gn+1.

One can check that dn ◦ dn−1 = 0 and that the sequence

. . .
dn+1−−−→ Pn

dn−→ Pn−1
dn−1−−−→ Pn−2 → . . .

is a projective resolution of the trivial G-module Z.
Let Qn := Z[G] ⊗Z Z[G]⊗n be the free Z[G]-module generated by the set Gn. Let denote an

element of the given basis of Qn by a symbol [g1|g2| . . . |gn]. Define the Z[G]-linear homomorphism
d′n : Qn → Qn−1 by the rule:

d′n[g1|g2| . . . |gn] = g1[g2| . . . |gn] +

n−1∑
i=1

(−1)i[g1| . . . |gi−1|gigi+1| . . . |gn]

+ (−1)n+1[g1| . . . |gn−1].

Again, one can check that d′n ◦ d′n−1 = 0 and that the sequence

. . .
d′n+1−−−→ Qn

d′n−→ Qn−1
d′n−1−−−→ Qn−2 → . . .

is a projective resolution of the trivial G-module Z.

Problem 1. Construct a Z[G]-linear isomorphism between resolutions (P•, d•) and (Q•, d
′
•).

Now define the subcomplex D• ⊂ Q•. Let Dn be the free Z[G]-module generated by the elements
[g1|g2| . . . |gn] such that gi = e ∈ G for some i.

Problem 2. Show that d′n(Dn) ⊂ Dn−1. Show that the quotient complex Q•/D• is a projective
resolution of the trivial G-module Z. This quotient complex is known as normalized bar complex.

Definition 1. Let A be a G-module. The n-th homology group Hn(G,A) of the group G with
coefficient in A is Hn(P•⊗Z[G]A) = Hn(Q•⊗Z[G]A). The n-th cohomology group Hn(G,A) of the
group G with coefficient in A is Hn(HomZ[G](P•, A)) = Hn(HomZ[G](Q•, A)).

Problem 3. Show that H∗(G,A) can be computed using the following chain complex (Cn, δn). Here
the group Cn(G,A) is the abelian group of all functions ϕ : Gn → A such that ϕ(g1, . . . , gn) = 0 if
some gi = e ∈ G. Define the differentials δn : Cn−1(G,A)→ Cn(G,A) by the rule:

(δnϕ)(g1, g2, . . . , gn) = g1ϕ(g2, . . . , gn) +
n−1∑
i=1

(−1)iϕ(g1, . . . , gi−1, gigi+1, . . . , gn)

+ (−1)n+1ϕ(g1, . . . , gn−1).
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Group Extensions

This section is devoted to give more down-to-earth description ofH2(G,A) in terms of group extensions.

Definition 2. Let A be an abelian group and let G be a group. We say that a third group E is an
extension of G by A if there exists the short exact sequence:

0→ A
i−→ E

p−→ G→ 1.

This means that i(A) is a normal subgroup of E and the kernel of p is precisely the group i(A).

Problem 4. Consider the E-action on A by conjugation. Show that this action is actually a G-action
(i.e. A ⊂ E acts trivially on A).

Definition 3. We say that extensions E and E′ of the group G by A are equivalent if there exists a
group isomorphism β : E → E′ such that the following diagram commutes:

0 A E G 1

0 A E′ G 1

i

Id

p

β Id

i′ p′

Problem 5. Show that two equivalent extensions give the same G-action on A.

So now we fix a G-action on A and try to describe all group extension of G by A with the given
G-action up to equivalence.

We say a section σ : G→ E of p, pσ = IdG, is based if it preserves the neutral element, σ(e) = e.

Definition 4. The factor set associated with an extension E and a based section σ is the function
ϕ : G×G→ A given by the rule:

ϕ(g, h) = σ(g)σ(h)(σ(gh))−1.

Problem 6. Show that a factor set is well-defined, i.e. ϕ(G×G) ⊂ A.

Problem 7. Let ϕ be the factor set associated with an extension E and a based section σ. Let E′ be
an equivalent extension. Show that there exists a based section σ′ : G → E′ such that the associated
factor set coincides with ϕ.

Problem 8. A function ϕ : G×G→ A is a factor set if and only if ϕ ∈ C2(G,A) and δ3(ϕ) = 0.
Hint: show that bivalent operations on the set A × G that extend the multiplication on G by

the multiplication on A corresponds to functions from G × G to A. Then show that under this
correspondence the associativity turns into δ3(ϕ) = 0.

Problem 9. Let ϕ be the factor set associated with an extension E and a based section σ and let ψ
be the factor set associated with the same extension E but with a different based section σ′. Show
that ϕ− ψ ∈ Im(δ2). This means that there exists a function α : G→ A, such that for all g, h ∈ G:

ϕ(g, h)− ψ(g, h) = gα(h)− α(gh) + α(g).

The three last problems show that we have a well-defined surjective map from the set of equivalence
classes of extensions to H2(G,A).

Problem 10. Show that this map is injective.
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Hopf’s Formula

Suppose that the group G is given by a corepresentation G = F
R , where F is a free group and R is

a normal subgroup of F . One can ask the question how to compute H∗(G,Z) in terms of the given
corepresentation? Here we give the answer for this question when ∗ = 1, 2.

Problem 11. Using the Hurewicz theorem H1(G,Z) = G
[G,G] , show that H1(G,Z) = F

R[F,F ] .

Problem 12. Suppose that Fn → Fn−1 → Fn−2 → . . . F0 → Z is an exact sequence such that all Fi
are projective Z[G]-modules. Show that

1. Hi(G,Z) ∼= Hi(FG) for all i < n;

2. There exists the exact sequence of abelian groups:

0→ Hn+1(G,Z)→ Hn(F )G → Hn(FG)→ Hn(G,Z)→ 0.

The sequence Fn → Fn−1 → Fn−2 → . . . F0 → Z from the previous problem is called a partial
resolution of the trivial G-module Z.

Let Y be the wedge of circles such that π1(Y ) ∼= F . Let Ỹ be the covering of Y corresponding to
the normal subgroup R. Then G acts on Ỹ and the complex of singular chains

C1(Ỹ )→ C0(Ỹ )→ 0

is a partial resolution of Z. This means that H2(G,Z) ∼= ker(H1(Ỹ )G → H1(Y )).

Problem 13. 1. Show that the F -action on R by conjugations induces the G-action on Rab.

2. Show that H1(Ỹ ) is isomorphic to Rab as a G-module.

3. Show that (Rab)G ∼= R/[F,R].

4. (Hopf’s theorem) Show that H2(G,Z) ∼= R∩[R,F ]
[F,F ] .
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