Bounded Cohomology Problem Session

Please skip to the last problem (which isn't there yet) first.

1.SUMMARY OF WHAT WE NEED FOR THE PROBLEM SESSION The cohomology of a group G with coefficients in a G-module M, $H^i(G, M)$, is the cohomology of the complex $C^*(G, M) = Hom_G(Q_*, M)$: here the Gmodule $Q_n := \mathbb{Z}[G] \otimes \mathbb{Z}[G]^{\otimes n}$ has the trivial action on $\mathbb{Z}[G]^n$ and the usual action on $\mathbb{Z}[G]$. $d(1 \otimes g_1 \otimes ... \otimes g_n) =$ $g_1 \otimes (g_2 \otimes ... g_n) - g_1 g_2 \otimes ... g_n + (-1)^{n+1} g_1 \otimes ... g_{n-1}$. Call the coboundary δ .¹.

Note that when M has a trivial G action, then $C^n(G, M)$ as an abelian group is the group of functions from $G^{\times n} \to M$. In what follows take $M = \mathbb{R}$ or \mathbb{Z} or \mathbb{R}/\mathbb{Z} .

One defines bounded cohomology $H_b^*(G, M)$ by taking bounded functions from $G^{\times n} \to M$.

1.1.**bounded cohomology of 'nice/amenable groups'=0.** We will call a group G amenable if there is a bounded linear functional $m : C_1(G, \mathbb{R}) \to \mathbb{R}$ that is invariant under G. Here, $C_1(G, \mathbb{R})$ is given the sup norm. To prevent the zero function we have the condition $m(1_G) = 1$.

Exercise 1.1. This will show that $H^i(G, M) = 0$, i > 0, when G is amenable. Turn the following into a proof: Suppose we are given $[f] \in H^n(G, M)$. Using m, kill a coordinate of the function $f' : G^{\times n} \to \mathbb{R}$. This gives a candidate for $h \in C^{n-1}(G)$ such that $\delta h = f$. Choose the right coordinate to kill by using the condition $\delta f = 0$.

(Aside) In lecture we then used this, and the long exact sequence in bounded cohomology, coming from $\mathbb{Z} \to \mathbb{R} \to \mathbb{R}/\mathbb{Z}$, to show that $H_b^2(G, M) = 0$ when G is perfect. We used this to show that any action of G on S^1 must have a fixed point.

1.2.**Euler numbers.** Given a map $\alpha \in Homeo_+(S^1)$, there is a rotation that approximates α . It is defined by $\lim \tilde{\alpha}^n/n$ where $\tilde{\alpha}$ is a lift to a homeomorphism of \mathbb{R} with $\tilde{\alpha}(0) = [0, 1)$. This number is called the rotation number.

Now note we have a map $SO(2) \rightarrow Homeo_+(S^1)$. This map is a homotopy equivalence because there is a map going the other way, given by the rotation number. Rotation numbers naturally live/come up in the context of bounded cohomology.

1.2.1. detour. In order to make use of this homotopy equivalence, we need to introduce bounded cohomology of spaces.

Definition 1.2. Let X be a topological space. Give the singular chain group $C_i(X)$ a norm by making the basis elements, namely the singular simplices, have norm 1. Let $C_b^i(X)$ be the bounded linear functionals on $C_i(X)$. The cohomology of this chain complex is called $H_b^i(X)$.

Exercise 1.3. Mentally prove the homotopy invariance of bounded cohomology of spaces.

One can also define $H_b^i(X, M)$ with coefficients in a $\pi_1(X)$ module M by taking the cohomology of the complex $Hom_{\pi_1(X),bdd}(C_i(\tilde{X}), M)$. Just like in the unbounded case $H_b^0(X, M) = M^{\pi_1(X)}$

In regular cohomology $H_i(G, -) = H_i(BG, -)$ because they're both the derived functors of invariants.

Exercise 1.4. Give a version of this argument for bounded cohomology.

1.2.2.bdd euler classes. Consider a topological circle bundle $S^1 \to E \to M$. If the classifying map $S^1 \to BHomeo_+(S_1)$ factors through $BHomeo_+(S_1)^{discretetopology}$, or equivalently factors through $B\pi_1(M)$ say that the bundle is flat. There is a canonical bounded cohomology class $d \in H_b^2(BHomeo_+(S_1)) = H_b^2(BS_1) = H_b^2(Homeo(S_1)) = H_b^2(S_1)$ coming from the extension $\mathbb{Z} \to \mathbb{R} \to S^1$ or equivalently from the extension $\mathbb{Z} \to intertwiningHomeo_+(\mathbb{R}) \to Homeo_+(S_1)$. Evidently if the bundle is flat, then pulling back d along the factored classifying map gives a bounded euler class $e_b \in H_b^2(\pi_1(M))$ or can further pull back to get $e_b \in H_b^2(M)$.

Exercise 1.5. Its true(but I haven't given you enough tools to show) that when $M = S^1$ that this bounded euler class is the euler number, after identifying $H_b^2(S_1) = \mathbb{R}/\mathbb{Z}$. Give a plausibility argument that when the bundle comes from a vector bundle of rank 2, that this rotation number is just the rotation given by the monodromy.

¹I stole this from Nikolai