
Bounded Cohomology Problem Session

Please skip to the last problem(which isn’t there yet) first.

1.Summary of what we need for the problem session The cohomology of a group G with coefficients
in a G-module M , Hi(G,M), is the cohomology of the complex C∗(G,M) = HomG(Q∗,M): here the G-
module Qn := Z[G]⊗Z[G]⊗n has the trivial action on Z[G]n and the usual action on Z[G]. d(1⊗g1⊗...⊗gn) =
g1 ⊗ (g2 ⊗ ...gn)− g1g2 ⊗ ....gn + .....(−1)n+1g1 ⊗ ...gn−1. Call the coboundary δ. 1.

Note that when M has a trivial G action, then Cn(G,M) as an abelian group is the group of functions
from G×n →M . In what follows take M = R or Z or R/Z.

One defines bounded cohomology H∗b (G,M) by taking bounded functions from G×n →M .

1.1.bounded cohomology of ‘nice/amenable groups’=0. We will call a group G amenable if there is
a bounded linear functional m : C1(G,R) → R that is invariant under G. Here, C1(G,R) is given the sup
norm. To prevent the zero function we have the condition m(1G) = 1.

Exercise 1.1. This will show that Hi(G,M) = 0, i > 0, when G is amenable. Turn the following into a
proof: Suppose we are given [f ] ∈ Hn(G,M). Using m, kill a coordinate of the function f ′ : G×n → R.
This gives a candidate for h ∈ Cn−1(G) such that δh = f . Choose the right coordinate to kill by using the
condition δf = 0.

.
(Aside) In lecture we then used this, and the long exact sequence in bounded cohomology, coming from

Z→ R→ R/Z, to show that H2
b (G,M) = 0 when G is perfect. We used this to show that any action of G

on S1 must have a fixed point.

1.2.Euler numbers. Given a map α ∈ Homeo+(S1), there is a rotation that approximates α. It is defined
by limα̃n/n where α̃ is a lift to a homeomorphism of R with α̃(0) = [0, 1). This number is called the rotation
number.

Now note we have a map SO(2)→ Homeo+(S1). This map is a homotopy equivalence because there is
a map going the other way, given by the rotation number. Rotation numbers naturally live/come up in the
context of bounded cohomology.

1.2.1.detour. In order to make use of this homotopy equivalence, we need to introduce bounded cohomology
of spaces.

Definition 1.2. Let X be a topological space. Give the singular chain group Ci(X) a norm by making the
basis elements, namely the singular simplices, have norm 1. Let Cib(X) be the bounded linear functionals on
Ci(X). The cohomology of this chain complex is called Hi

b(X).

Exercise 1.3. Mentally prove the homotopy invariance of bounded cohomology of spaces.

One can also define Hi
b(X,M) with coefficients in a π1(X) module M by taking the cohomology of the

complex Homπ1(X),bdd(Ci(X̃),M). Just like in the unbounded case H0
b (X,M) = Mπ1(X)

In regular cohomology Hi(G,−) = Hi(BG,−) because they’re both the derived functors of invariants.

Exercise 1.4. Give a version of this argument for bounded cohomology.

1.2.2.bdd euler classes. Consider a topological circle bundle S1 → E → M . If the classifying map S1 →
BHomeo+(S1) factors through BHomeo+(S1)discretetopology, or equivalently factors through Bπ1(M) say
that the bundle is flat. There is a canonical bounded cohomology class d ∈ H2

b (BHomeo+(S1)) = H2
b (BS1) =

H2
b (Homeo(S1)) = H2

b (S1) coming from the extension Z → R → S1 or equivalently from the extension
Z → intertwiningHomeo+(R) → Homeo+(S1). Evidently if the bundle is flat, then pulling back d along
the factored classifying map gives a bounded euler class eb ∈ H2

b (π1(M)) or can further pull back to get
eb ∈ H2

b (M).

Exercise 1.5. Its true(but I haven’t given you enough tools to show) that when M = S1 that this bounded
euler class is the euler number, after identifying H2

b (S1) = R/Z. Give a plausibility argument that when
the bundle comes from a vector bundle of rank 2, that this rotation number is just the rotation given by the
monodromy.

1I stole this from Nikolai
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