GROMOV'S POLYNOMIAL GROWTH THEOREM

DANIEL STUDENMUND

1. INTRODUCTION AND BASIC FACTS

Our goal today is to understand when and how the geometry of a group informs its algebra. Given an arbitrary finitely generated group, its algebra may be difficult to access. On the other hand, if we have a group which is also a smooth manifold, we may study it using powerful tools like calculus.

Recall that if G is generated by a finite set S, then G is a metric space under the metric

$$d_S(g,h) = ||h^{-1}g||_s$$

where $|| - ||_S$ is the *S*-length, i.e. the minimum number of elements $S \cup S^{-1}$ required to write the element $h^{-1}g \in G$. Equivalently, it's the minimum number of steps to get from g to h in the Cayley graph of G.

This turns G from a set into a metric space. We can then ask about the "shape" of G. For example, we can talk about the number of ends of a group as seen earlier in the semester.

Let $B_S(id, n)$ be a closed ball of radius n around $id \in G$. How does the number of elements in this ball (which is finite since G is finitely generated) grow as n grows?

Definition 1.1. The word growth function

 $N_{G,S}: \mathbb{Z}_+ \to \mathbb{Z}_+$

is defined by sending $n \mapsto |B_S(id, n)|$.

The question above can then be reformulated by asking about the asymptotic behavior of $N_{G,S}$.

Definition 1.2. Given $f, g : \mathbb{Z}_+ \to \mathbb{Z}_+$, we say that $f \preccurlyeq g$ if there exists C > 1 such that $f(n) \leq C \cdot g(C \cdot n)$ for all n. We say that $f \preccurlyeq g$ if $f \preccurlyeq g$ and $g \preccurlyeq f$.

- **Example 1.3.** (1) We have $n^{\alpha} \simeq n^{\beta}$ if and only if $\alpha = \beta$. Growth of the form n^{r} for r fixed is called *polynomial growth*.
 - (2) We have $2^n \asymp b^n$ for any b > 1. Growth of the form b^n for fixed b is called *exponential growth*.

This notion of equivalence is not sensitive to quasi-isometric changes of the group G. This tells us the first two of the following properties of word growth:

Proposition 1.4. The following are true:

- (1) If S, S' are two finite generating sets of G, then $N_{G,S} \simeq N_{G,S'}$.
- (2) If $H \leq G$ has finite index, then $N_H \asymp N_G$.
- (3) If $H \leq G$ or G surjects on to H, then $N_H \preccurlyeq N_G$.
- (4) If M is a closed Riemannian manifold and $G = \pi_1(M)$, then

 $N_G \asymp (volume \ of \ a \ ball \ of \ radius \ n \ in \ \tilde{M}).$

Example 1.5. Let M be a torus, so the universal cover $\tilde{M} \cong \mathbb{R}^2$ is \mathbb{R}^2 . The covering map is the quotient by the integer lattice. A ball of radius 2 in the word metric in the group $\pi_1(M) = \mathbb{Z}^2$, with the standard generating set, consists of all the lattice points inside a diamond with vertices at $(0, \pm 2)$ and $(\pm 2, 0)$. Comparing to the Euclidean ball of radius 2, we see that the number of points enclosed is the same.

DANIEL STUDENMUND

Remark 1.6. Note that the last equivalence implies that the growth rate N_G depends only on the universal cover. In particular, this will not distinguish between a genus two surface and a genus three surface.

Corollary 1.7. If M is a closed Riemannian manifold of negative sectional curvature, then $\pi_1(M)$ has exponential growth.

Roughly speaking, this follows from the observation that balls in hyperbolic space grow exponentially quickly in the radius.

2. Examples

Example 2.1. Let $G = \mathbb{Z}^r$. This has growth $N_G(n) \simeq n^r$.

Example 2.2. Let G be a free group on 2 generators (or finitely many generators). Then $N_G(n) \approx 3^n$. This follows from a similar argument to what we saw in one of the first few problem sessions.

Example 2.3. Let G be the Heisenberg group, the group of matrices

$$G = \left\{ \begin{pmatrix} 1 & \alpha & \gamma \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{pmatrix} \middle| \alpha, \beta, \gamma \in \mathbb{Z} \right\}.$$

Parametrize elements of G by triples (α, β, γ) and let x = (1, 0, 0), y = (0, 1, 0) and z = (0, 0, 1). Then G has presentation

$$G = \langle x, y, z | [x, y] = z, zx = xz, zy = yz \rangle,$$

where $[x, y] = xyx^{-1}y^{-1}$. Take $S := \{x, y, z\}$ to be the generating set. You can check using matrix multiplication that $[x^a, y^b] = z^{ab}$. From this it follows that words of length on the order of 6n can produce elements of the form z^k for $-n^2 \leq k \leq n^2$. We conclude (see problem session for details) that $B_G(id, 8n)$ contains $w = x^a y^b z^c$ for $-n \leq a, b \leq n$ and $-n^2 \leq c \leq n^2$. Since these are distinct elements of G, we see that $n^4 \preccurlyeq N_G(n)$. The opposite inequality is also true, so $N_G(n) \approx n^4$.

Example 2.4. Let $G = \mathbb{Z}^2 \rtimes_M \mathbb{Z}$ where \mathbb{Z} acts by the matrix $M = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Equivalently, G is the set of 3×3 matrices with M^{γ} in the lower right, 0's above that, and $1, \alpha, \beta$ along the right-hand column, where $\alpha\beta, \gamma \in \mathbb{Z}$. We will show in problem session, using the fact that M has an eigenvalue off the unit circle, that G has exponential growth.

Remark 2.5. The previous two examples are fundamental objects in 3-dimensional geometry. The Heisenberg group acts cocompactly on Thurston's Nil geometry, while $\mathbb{Z}^2 \rtimes_M \mathbb{Z}$ acts cocompactly on Sol geometry.

3. Generalities

Recall that if $H, K \leq G$, then their commutator is the normal subgroup

$$[H,K] := \langle \{[h,k] : h \in H, k \in K\} \rangle \trianglelefteq G.$$

A group G has a *lower central series* defined inductively by

$$G_0 := G, \quad G_{k+1} := [G, G_k].$$

Sometimes this is interesting, sometimes it's not. For example, we say that G is perfect $G_i = G$. For example, this happens when G is simple. On the other hand, we say that G is nilpotent if $G_L = \{id\}$ for some L. In this case, the nilpotence class of H is the smallest L such that $G_L = \{id\}$.

Example 3.1. Abelian groups are nilpotent of class 1.

Example 3.2. The Heisenberg group is nilpotent of class 2. We have $G_1 = \langle z \rangle$ and $G_2 = \{e\}$.

Theorem 3.3 (Wolf, Bass, Guivarc'h). Any nilpotent group G has polynomial growth $N_G(n) \preccurlyeq n^r$ for some r. In fact, $N_G(n) \approx n^{f(G)}$ where

$$f(G) = \sum_{k=0}^{\infty} (k+1) \cdot \dim(G_k/G_{k+1})$$

We say that G is solvable if the *derived series* defined by

 $G_{(0)} := G, \quad G_{(k+1)} := [G_{(k)}, G_{(k)}].$

terminates. In particular, nilpotent groups are solvable. The converse does not hold - for example, the group $\mathbb{Z}^2 \rtimes_M \mathbb{Z}$ in the previous section is solvable but not nilpotent.

Theorem 3.4 (Milnor-Wolf). A finitely generated solvable group has polynomial growth if and only if it's nilpotent. Otherwise, it has exponential growth.

Gromov's polynomial growth theorem eliminates the need for the 'solvable' hypothesis, providing a general converse to the theorem of Wolf.

Theorem 3.5 (Gromov). A finitely generated group G has polynomial growth if and only if G is virtually nilpotent, *i.e.* G has a nilpotent subgroup of finite index.

In general, knowledge of the growth of G can only provide information about G up to finite-index, so the conclusion that G is only nilpotent up to finite index cannot be strengthened. Gromov's theorem provides really strong group-theoretic information about G; as such, the theorem has a really difficult proof!

Remark 3.6. One corollary of Gromov's theorem, using the formula of Bass and Guivarc'h, is that if $N_G(n) \preccurlyeq n^r$ for some positive real number r, then $N_G(n) \preccurlyeq n^k$ for some positive integer k.

Corollary 3.7. Any group quasi-isometric to a nilpotent group is virtually nilpotent.

Corollary 3.8 (Paulin). Any group quasi-isometric to an abelian group is virtually abelian.

This requires the study of something called "asymptotic cones."

Corollary 3.9. If a compact Riemannian manifold M admits an expanding map, *i.e.* a map $M \to M$ which scales the length of all tangent vectors by at least some uniform $\lambda > 1$, then M is finitely covered by a nilmanifold, *i.e.* a simply connected nilpotent Lie group modulo a subgroup.

Corollary 3.10. A random walk on a group is recurrent if and only if that group is \mathbb{Z}^k for $k \in \{0, 1, 2\}$.

4. Quick idea of the proof

Assume that G has polynomial growth. Then there are two steps:

- (1) (Big step) Show that G has a finite dimensional representation $\rho: G \to GL_n \mathbb{R}$ with infinite image.
- (2) Induct on the degree of growth using Tits's alternative: any finitely generated linear group is either virtually solvable or contains a nonabelian free subgroup.

Remark 4.1. Kleiner and Tao–Shalom have given alternative proofs which use less difficult machinery.

How does Gromov prove Step 1? He invents Gromov-Hausdoff convergence of metric spaces. Note that G acts on its Cayley graph (Γ, d_S) . Let $X_n := (\Gamma, \frac{1}{n}d_S)$. Then X_n converges to some space Y with a G-action. One then shows (through many technical arguments and Montgomery–Zippin's solution to Hilbert's Fifth Problem) that (Y) is a Lie group, after passage to an sufficiently nice subsequence of X_n .