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1. Introduction and basic facts

Our goal today is to understand when and how the geometry of a group informs its algebra. Given
an arbitrary finitely generated group, its algebra may be difficult to access. On the other hand, if
we have a group which is also a smooth manifold, we may study it using powerful tools like calculus.

Recall that if G is generated by a finite set S, then G is a metric space under the metric

dS(g, h) = ||h−1g||s
where || − ||S is the S-length, i.e. the minimum number of elements S ∪ S−1 required to write the
element h−1g ∈ G. Equivalently, it’s the minimum number of steps to get from g to h in the Cayley
graph of G.

This turns G from a set into a metric space. We can then ask about the “shape” of G. For
example, we can talk about the number of ends of a group as seen earlier in the semester.

Let BS(id, n) be a closed ball of radius n around id ∈ G. How does the number of elements in
this ball (which is finite since G is finitely generated) grow as n grows?

Definition 1.1. The word growth function

NG,S : Z+ → Z+

is defined by sending n 7→ |BS(id, n)|.

The question above can then be reformulated by asking about the asymptotic behavior of NG,S .

Definition 1.2. Given f, g : Z+ → Z+, we say that f 4 g if there exists C > 1 such that
f(n) ≤ C · g(C · n) for all n. We say that f � g if f 4 g and g 4 f .

Example 1.3. (1) We have nα � nβ if and only if α = β. Growth of the form nr for r fixed is
called polynomial growth.

(2) We have 2n � bn for any b > 1. Growth of the form bn for fixed b is called exponential
growth.

This notion of equivalence is not sensitive to quasi-isometric changes of the group G. This tells
us the first two of the following properties of word growth:

Proposition 1.4. The following are true:

(1) If S, S′ are two finite generating sets of G, then NG,S � NG,S′ .
(2) If H ≤ G has finite index, then NH � NG.
(3) If H ≤ G or G surjects on to H, then NH 4 NG.
(4) If M is a closed Riemannian manifold and G = π1(M), then

NG � (volume of a ball of radius n in M̃).

Example 1.5. Let M be a torus, so the universal cover M̃ ∼= R2 is R2. The covering map is the
quotient by the integer lattice. A ball of radius 2 in the word metric in the group π1(M) = Z2,
with the standard generating set, consists of all the lattice points inside a diamond with vertices at
(0,±2) and (±2, 0). Comparing to the Euclidean ball of radius 2, we see that the number of points
enclosed is the same.
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Remark 1.6. Note that the last equivalence implies that the growth rate NG depends only on the
universal cover. In particular, this will not distinguish between a genus two surface and a genus
three surface.

Corollary 1.7. If M is a closed Riemannian manifold of negative sectional curvature, then π1(M)
has exponential growth.

Roughly speaking, this follows from the observation that balls in hyperbolic space grow exponen-
tially quickly in the radius.

2. Examples

Example 2.1. Let G = Zr. This has growth NG(n) � nr.

Example 2.2. Let G be a free group on 2 generators (or finitely many generators). Then NG(n) �
3n. This follows from a similar argument to what we saw in one of the first few problem sessions.

Example 2.3. Let G be the Heisenberg group, the group of matrices

G =


1 α γ

0 1 β
0 0 1

 ∣∣∣∣∣∣ α, β, γ ∈ Z

 .

Parametrize elements of G by triples (α, β, γ) and let x = (1, 0, 0), y = (0, 1, 0) and z = (0, 0, 1).
Then G has presentation

G = 〈x, y, z|[x, y] = z, zx = xz, zy = yz〉,

where [x, y] = xyx−1y−1. Take S := {x, y, z} to be the generating set. You can check using matrix
multiplication that [xa, yb] = zab. From this it follows that words of length on the order of 6n can
produce elements of the form zk for −n2 ≤ k ≤ n2. We conclude (see problem session for details)
that BG(id, 8n) contains w = xaybzc for −n ≤ a, b ≤ n and −n2 ≤ c ≤ n2. Since these are distinct
elements of G, we see that n4 4 NG(n). The opposite inequality is also true, so NG(n) � n4.

Example 2.4. Let G = Z2 oM Z where Z acts by the matrix M = ( 2 1
1 1 ). Equivalently, G is the

set of 3 × 3 matrices with Mγ in the lower right, 0’s above that, and 1, α, β along the right-hand
column, where αβ, γ ∈ Z. We will show in problem session, using the fact that M has an eigenvalue
off the unit circle, that G has exponential growth.

Remark 2.5. The previous two examples are fundamental objects in 3-dimensional geometry. The
Heisenberg group acts cocompactly on Thurston’s Nil geometry, while Z2 oM Z acts cocompactly on
Sol geometry.

3. Generalities

Recall that if H,K ≤ G, then their commutator is the normal subgroup

[H,K] := 〈{[h, k] : h ∈ H, k ∈ K}〉 E G.

A group G has a lower central series defined inductively by

G0 := G, Gk+1 := [G,Gk].

Sometimes this is interesting, sometimes it’s not. For example, we say that G is perfect Gi = G. For
example, this happens when G is simple. On the other hand, we say that G is nilpotent if GL = {id}
for some L. In this case, the nilpotence class of H is the smallest L such that GL = {id}.

Example 3.1. Abelian groups are nilpotent of class 1.

Example 3.2. The Heisenberg group is nilpotent of class 2. We have G1 = 〈z〉 and G2 = {e}.
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Theorem 3.3 (Wolf, Bass, Guivarc’h). Any nilpotent group G has polynomial growth NG(n) 4 nr

for some r. In fact, NG(n) � nf(G) where

f(G) =

∞∑
k=0

(k + 1) · dim(Gk/Gk+1).

We say that G is solvable if the derived series defined by

G(0) := G, G(k+1) := [G(k), G(k)].

terminates. In particular, nilpotent groups are solvable. The converse does not hold - for example,
the group Z2 oM Z in the previous section is solvable but not nilpotent.

Theorem 3.4 (Milnor-Wolf). A finitely generated solvable group has polynomial growth if and only
if it’s nilpotent. Otherwise, it has exponential growth.

Gromov’s polynomial growth theorem eliminates the need for the ‘solvable’ hypothesis, providing
a general converse to the theorem of Wolf.

Theorem 3.5 (Gromov). A finitely generated group G has polynomial growth if and only if G is
virtually nilpotent, i.e. G has a nilpotent subgroup of finite index.

In general, knowledge of the growth of G can only provide information about G up to finite-index,
so the conclusion that G is only nilpotent up to finite index cannot be strengthened. Gromov’s
theorem provides really strong group-theoretic information about G; as such, the theorem has a
really difficult proof!

Remark 3.6. One corollary of Gromov’s theorem, using the formula of Bass and Guivarc’h, is that
if NG(n) 4 nr for some positive real number r, then NG(n) � nk for some positive integer k.

Corollary 3.7. Any group quasi-isometric to a nilpotent group is virtually nilpotent.

Corollary 3.8 (Paulin). Any group quasi-isometric to an abelian group is virtually abelian.

This requires the study of something called “asymptotic cones.”

Corollary 3.9. If a compact Riemannian manifold M admits an expanding map, i.e. a map
M → M which scales the length of all tangent vectors by at least some uniform λ > 1, then M is
finitely covered by a nilmanifold, i.e. a simply connected nilpotent Lie group modulo a subgroup.

Corollary 3.10. A random walk on a group is recurrent if and only if that group is Zk for k ∈
{0, 1, 2}.

4. Quick idea of the proof

Assume that G has polynomial growth. Then there are two steps:

(1) (Big step) Show that G has a finite dimensional representation ρ : G→ GLnR with infinite
image.

(2) Induct on the degree of growth using Tits’s alternative: any finitely generated linear group
is either virtually solvable or contains a nonabelian free subgroup.

Remark 4.1. Kleiner and Tao–Shalom have given alternative proofs which use less difficult ma-
chinery.

How does Gromov prove Step 1? He invents Gromov-Hausdoff convergence of metric spaces. Note
that G acts on its Cayley graph (Γ, dS). Let Xn := (Γ, 1

ndS). Then Xn converges to some space
Y with a G-action. One then shows (through many technical arguments and Montgomery–Zippin’s
solution to Hilbert’s Fifth Problem) that (Y ) is a Lie group, after passage to an sufficiently nice
subsequence of Xn.


