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1. Definition and some classical examples

We saw two weeks ago that a coefficient system is a functor from the homotopy
category of G-orbits to the category of abelian groups. Today we’ll introduce further
structure to this picture which will be important in future weeks. From now on let G
be a finite group; one can make sense of these ideas for compact Lie groups, but we
won’t need this for the Kervaire problem so it can be left to the interested listener.

We’ll start with an enhanced version of the homotopy category of G-orbits. Let
FG denote the category of finite G-sets.

Definition 1.1. The Lindner category B+
G for a finite group has objects finite G-sets.

For G-sets X and Y , morphisms X → Y are equivalence classes of diagrams in FG
of the form

X ← U → Y

where two diagrams (called spans) are equivalent if there is an isomorphism between
the middle object. The morphism set B+

G(X, Y ) is an abelian monoid under disjoint
union of middle objects with zero morphism where U = ∅.

The composition is defined as follows. Let Y ← V → Z represent the morphism
Y → Z. Then the composite morphism X → Z is represented by X ← W → Z
where W = U ×Y V is the pullback of the square in the diagram

W

U V

X Y Z

Definition 1.2. The Burnside category BG for a finite group G has the same objects
as the Lindner category, but the morphism set is the Grothendieck group completion
of the abelian monoid B+

G(X, Y ) with composition induced by the composition in B+
G.
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Definition 1.3. A Mackey functor M for a finite group G is an additive functor
B+
G → Ab, i.e. a functor enriched over abelian monoids which sends disjoint unions

to direct sums.
Equivalently, it is an additive functor from BG → Ab, i.e. a functor enriched over

abelian groups which sends disjoint unions to direct sums.
Exercise: Show these two definitions are equivalent.

Remark 1.4. Note that any finite G-set decomposes as a disjoint union of orbits of
the form G/H; since we’ll require a Mackey functor to be additive, this implies that
the value of a Mackey functor is determined by its values on orbits of this form.

Example 1.5. The Burnside ring A(G) of a group G is the Grothendieck group of
the abelian monoid (under disjoint union) of isomorphism classes of finite G-sets with
multiplication induced by Cartesian product.

The Burnside Mackey functor A(G) for a group G is defined by setting A(G)(X) :=

BG(G/G,X).
Exercise: Understand what this Mackey functor does on morphisms. We’ll see

below that a Mackey functor has transfer and restriction maps; for the Burnside
Mackey functor, transfer is given by composition and restriction is given by pullback.

This definition is concise but can obfuscate some of the structure of Mackey func-
tors. The following equivalent definition shines light on some of this structure.

Definition 1.6. A Mackey functor M for a finite group G is a pair of functors
M∗ : FG → Ab and M∗ : (FG)op → Ab that agree on objects, send finite disjoint
unions to direct sums, and such that for every pullback diagram in FG

R S

T U

β

α

γ

δ

we have M∗(γ)M∗(δ) = M∗(α)M∗(β). For a finite G-set T define

M(T ) := M∗(T ) = M∗(T )

and for subgroups K ⊂ H ⊂ G with projection p : G/K → G/H, denote the induced
maps by TrHK = M∗(p) (transfer) and ResHK = M∗(p).

Example 1.7. Let RO(G) be the ring of real orthogonal representations of G, i.e. the
Grothendieck group of the abelian monoid under direct sum of isomorphism classes of
finite dimensional orthogonal representations V of G with multiplication induced by
tensor product.

For H ⊂ G, there is a restriction map

ResGH : RO(G)→ RO(H)

obtained by restricting the action of G- to an H-action.
There is also a transfer map

TrGH : RO(H)→ RO(G)
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defined by setting

TrGHW := R[G]⊗R[H] W.

Exercise: Show that RO(G) defines a Mackey functor RO(G) by setting RO(G)(G/H) =

RO(H).

2. More examples

Example 2.1. The constant Mackey functor Z is represented by Z with trivial action,
i.e. it is defined by

Z(B) = HomG(B,Z) = Hom(B/G,Z).

Example 2.2. Let S ∈ FG be a finite G-set, and let Z{S} be the free abelian group
generated by S. The permutation Mackey functor on S is the Mackey functor repre-
sented by Z{S}, i.e. it is defined by

Z{S}(B) = HomG(B,Z{S}).
Restriction maps are given by precomposition and transfer maps are given by sum-

ming over fibers, i.e. if g : A→ B then Z{S}∗(g)(f)(b) =
∑

x∈g−1(b) f(x).

Example 2.3. This example shows that equivariant stable homotopy groups define a
Mackey functor. If B is a finite G-set and X is a G-space, we can set

(πn(X))∗(B) = [Sn ∧B+, X]G

(πn(X))∗(B) = [Sn, B+ ∧X]G.

These form a Mackey functor since finite G-sets are self-dual, i.e. there is an iso-
morphism

[G/H+ ∧ E,F ] ∼= [E,G/H+ ∧ F ].

In this case, saying these form a Mackey functor is saying that equivariant stable
homotopy groups come with some additional structure since evaluation on G/H gives

πn(X)(G/H) = [Sn ∧G/H+, X]G = [Sn, X]H = πHn (X).

Exercise: Show that this defines a Mackey functor, i.e. understand restriction and
transfers.

Some properties of these Mackey functors will be developed in the exercises. We
can visualize a Mackey functor using a Lewis diagram:

Example 2.4. A Lewis diagram is a tool for understanding a Mackey functor. If the
subgroups of G are linearly ordered, e.g. if G is cyclic of order pk, then we can order
the resulting quotients

e = Cpk/Cpk ⊂ Cpk/Cpk−1 ⊂ · · · ⊂ Cpk/Cp ⊂ Cpk/e = Cpk .

We then apply the Mackey functor and draw in the transfer and restriction maps. For
example, we have [Lewis diagram for C8].

Exercise: For various C2-actions on S1, draw the Lewis diagram for π1(S
1).
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3. Mackey functor homology

Recall from Prasit’s second talk that we could define Eilenberg-Mac Lane G-spaces
for any coefficient system M , denoted K(M,n). These satisfied

πq(K(M,n)) =

{
M q = n

0 q 6= n

and we saw that these represented reduced Bredon cohomology:

H̃n
G(X;M) = [X,K(M,n)]G.

We can define Mackey functor homology following the same line of thinking.

Proposition 3.1 (Greenlees-May). Given a Mackey functor M , there is an equivari-
ant Eilenberg-Maclane spectrum HM such that

πn(HM) =

{
M n = 0

0 n 6= 0

Definition 3.2. Given a Mackey functor M , we can define equivariant homology with
coefficients in M as

HG
k (X;M) = πGk (HM ∧X)

and equivariant cohomology as

Hk
G(X;M) = [X,ΣkHM ]G.

This definition is nice but we’d like a chain complex as in the case of Bredon
cohomology which allows us to understand equivariant (co)homology by getting our
hands dirty.

Definition 3.3. Let X be a G-CW spectrum. Recall that

X(n)/X(n−1) ∼ Xn+ ∧ Sn

where Xn is a discrete G-set. Set

Ccell
n (X;M) = πGnHM ∧X(n)/X(n−1) = πG0 HM ∧Xn+

Cn
cell(X;M) = [X(n)/X(n−1),ΣnHM ]G = [Σ∞Xn+, HM ]G

The boundary maps

Ccell
n (X;M)→ Ccell

n−1(X;M)

are defined using the map

X(n)/X(n−1) → ΣX(n−1)/X(n−2)

and the coboundary maps are defined similarly.
The homology of these complexes are the equivariant homology and cohomology

groups of X with coefficients in M . By writing the G-set Xn as a coproduct of finite
G-sets, one can express these complexes in terms of the values of M on these finite
G-sets.
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Example 3.4 (HHR Example 3.7). Let X = Sd−1 with action of C2n given by an-
tipodal map, pointed by adding a disjoint basepoint. Hemisphere decomposition is
equivariant for the action of C2n. One has

X(j)/X(j−1) = (C2n/C2n−1)+ ∧ Sj

and the complex of cellular chains Ccell
∗ (X;M) is therefore a complex of length d

M(C2n)→ · · · 1+γ→ M(C2n)
1−γ→ M(C2n)

where γ is a generator for C2n.
Exercise: Work out this example with n = 3 and M = Z. More generally, show

that Ccell
n (X;Z) is the permutation Mackey functor Z{Xn} which associates to a finite

G-set B the group of equivariant functions

B → Z{Xn} = Ccell
n X.

Lemma 3.5 (HHR Example 3.9). If X is a G-space admitting the structure of a
G-CW complex, then the equivariant cohomology groups H∗G(X;Z) are isomorphic to
the cohomology groups H∗(X/G;Z) of the orbit space.

Proof. The equivariant cell decomposition of X induces a cell decomposition of X/G
so we obtain an isomorphism

C∗cell(X;Z) ' C∗cell(X)G ' C∗cell(X/G)

�

Exercise: Apply the lemma to show that if V is a representation of G of dimension
d, then there is a (non-canonical) isomorphism

HG
d (SV ;Z) = Z.

4. The closed symmetric monoidal category of Mackey functors

Definition 4.1. The category of G-Mackey functors and natural transformations is
denoted MG.

The Day convolution is a powerful construction which allows one to combine two
different symmetric monoidal structures to produce a symmetric monoidal structure
on a certain functor category. For example, the smash product in many categories of
structured spectra (e.g. symmetric spectra) can be formulated as a Day convolution.

Definition 4.2 (Day convolution). LetD = (D0,⊕, 0) be a small symmetric monoidal
V-category where V = (V0,⊗, 1) is a cocomplete closed symmetric monoidal category,
and let X, Y ∈ [D,V ] be V-functors. Then we define X�Y to be the left Kan
extension of ⊗ ◦ (X × Y ) along ⊕,

D ×D V × V V

D

X×Y

⊕

⊗
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Example 4.3. Let D = JG be the category of finite-dimensional orthogonal repre-
sentations with unit the 0-dimensional representation and product ⊕. We can think
of a G-spectrum X as a functor X : JG → TG where TG is the category of topologi-
cal G-spaces and not necessarily equivariant maps. The category TG is a cocomplete
symmetric monoidal category under ∧. Then the diagram

JG × JG TG × TG TG

JG

X×Y

⊕

∧

X∧Y

defines a G-spectrum which we call X∧Y (in view of the following theorem). If we take
G = e, then this recovers classical orthogonal spectra, and writing out the definition
of left Kan extension shows that the n-th space of the smash product (X ∧ Y )n is the
coequalizer

(
∨

p+1+q=n

O(n)+∧O(p)×1×O(q)Xp∧S1∧Xq)
→→ (

∨
p+q=n

O(n)+∧O(p)×O(q)Xp∧Xq)→ (X∧Y )n.

Theorem 4.4 (Day convolution theorem). The binary operation above gives the func-
tor category [D,V ] a closed symmetric monoidal structure in which the unit element
is the V-functor I = h0 given by ID = D(0, D). The internal Hom-functor is the
right adjoint of the functor (−)⊗X.

Example 4.5. For a finite group G, the box product M�N of two G-Mackey func-
tors is the left Kan extension

BG × BG Ab× Ab Ab

BG

×

M×N ⊗

M�N

This gives the category of G-Mackey functors MG the structure of a closed symmetric
monoidal category with unit the Burnside Mackey functor A.


