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1 Mapping Class Group

Definition 1. Given a compact, orientable surface Σ, the mapping class group of Σ
is defined to be

Mod(Σ) := Diff+(Σ, ∂Σ)/isotopy.

Example 1. The mapping class group of the disk D2 is trivial.

Example 2. The mapping class group of the torus T 2 is isomorphic to SL(2,Z). To
see this, consider the map

ψ : Mod(T 2)→ Aut(H1(T 2;Z)) ∼= Aut(Z2) ∼= GL(2,Z)

induced by action on homology. However, this map preserves the algebraic intersec-
tion number î. Using this fact, one can show that ψ(Mod(T 2)) ⊆ SL(2,Z). [Exercise:
show that this map ψ : Mod(T 2)→ SL(2,Z) is an isomorphism.]

To begin talking about the mapping class group, it is helpful to see some nontrivial
elements. The “simplest” such nontrivial elements are obtained by twisting about
simple closed curves. Let α be a simple closed curve in Σ, and let N be a tubular
neighborhood of α. Then N is diffeomorphic to the annlus A = S1× [0, 1]. Choose an
orientation-preserving diffeomorphism ϕ : A → N . Define the twist map T : A → A
by T (θ, t) = (θ − 2πt, t).

Definition 2. The Dehn Twist about a simple closed curve α is the map

Tα(x) =

{
ϕ ◦ T ◦ ϕ−1(x) if x ∈ N
x if x ∈ Σ \N.

Remark. If α ' β, then Tα ' Tβ. So, it makes sense to talk about the Dehn twist
about a homotopy class of curves.

Example 3. Consider the annulus A. One can show that Mod(A) ∼= Z, where the
generator is given by the Dehn twist about the core curve of A.
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Example 4. Earlier, we saw a map ψ : Mod(T 2) → SL(2,Z) given by action on
homology. Let’s compute this map on some Dehn twists. Consider the two simple
closed curves shown below.

[picture of standard simple closed curves on torus]
Dehn twisting these curves about each other, we see

[Dehn twists on torus]
Therefore,

Ta 7→
[
1 1
0 1

]
Tb 7→

[
1 0
−1 1

]
.

Recall that these two matrices are the “standard” generators of SL(2,Z). Therefore,
we have shown that Mod(T 2) is generated by Ta and Tb.

In the these two examples, we saw that the mapping class group is finitely gen-
erated by Dehn twists. One can then ask the question: is this always the case? The
answer (at least for closed surfaces) was first proven by Dehn in 1930.

Theorem 1. If Σ is a compact, orientable surface, then Mod(Σ) is finitely generated
by Dehn twists.

In proving this theorem for closed surfaces, Dehn gave a list of 2g(g − 1) Dehn
twists which generate the mapping class group (where g is the genus of the surface).
This list was then improved by Lickorish and Humphries who gave collections of size
3g − 1 and 2g + 1, respectively.

[picture of Lickorish twists/Humphries generators]
From here, it is very natural to ask whether the mapping class group is finitely

presented. The answer to this question was first proved by McCool in 1975.

Theorem 2. If Σ is a compact, orientable surface, then Mod(Σ) is finitely presented.

McCool proved this theorem by giving an algorithm to compute the necessary
relations. However, no explicit presentation has been given using this algorithm. To
remedy this, Hatcher and Thurston gave a new (topologically motivated) algorithm for
computing a finite presentation of Mod(Σ). This algorithm was carried out by Harer
to give a concrete finite presentation. Finally, Wajnryb simplified this presentation
into 5 “classes” of relations. Some of these are easy to see.

Proposition 1. (Disjointness Relation) If a ∩ b = ∅, then TaTb = TbTa.

Proposition 2. (Braid Relation) If a ∩ b = {∗}, then TaTbTa = TbTaTb.

2 Symplectic Representation

In one of our first examples, we studied the action of Mod(T 2) on H1(T 2;Z) to show
that Mod(T 2) ∼= SL(2,Z). We would like to generalize this situation to an arbitrary
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compact surface. Let b ∈ {0, 1}, and let Σb
g be the surface of genus g with b boundary

components. Then, just as in the torus case, we have a map

Ψ0 : Mod(Σb
g)→ Aut

(
H1(Σb

g;Z)
) ∼= Aut

(
Z2g
) ∼= GL(2g,Z).

Again, we note that elements of Mod(Σb
g) preserve the symplectic form î (here

we are using the fact that b ∈ {0, 1}, otherwise î is not symplectic). Therefore,
Ψ0(Mod(Σb

g)) ⊆ Sp(2g,Z), and so we get a representation

Ψ : Mod(Σb
g)→ Sp(2g,Z).

Now, we have a homomorphism out of Mod(Σb
g) and a set of generators of Mod(Σb

g)
(namely, Dehn twists); how does Ψ act on these generators?

Proposition 3. Let a, b be (isotopy classes of) simple closed curves, then

Ψ(Tb)([a]) = [a] + î(a, b)[b].

In the torus case, we found that this map is an isomorphism (note that Sp(2,Z) ∼=
SL(2,Z)). It turns out that this is not always the case, but Ψ is always at least
surjective.

Proposition 4. The map Ψ : Mod(Σb
g)→ Sp(2g,Z) is surjective.

Outline of Proof. We will use three tools in this proof:

(i) There is an action of Sp(2g,Z) on the set of symplectic bases for H1(Σb
g;Z)

which is simply transitive. Here, a symplectic basis is a basis {a1, b1, . . . , ag, bg}
for H1(Σb

g,Z) such that î(ai, bj) = δij and î(ai, aj) = 0 = î(bi, bj) for all i, j.

(ii) There is an action of Mod(Σb
g) on the set of geometric symplectic bases which is

transitive. Here, a geometric symplectic basis is a collection of oriented simple
closed curves {α1, β1, . . . , αg, βg} in Σb

g such that {[α1], [β1], . . . , [αg], [βg}] is a

geometric symplectic basis for H1(Σb
g;Z) and i(c, d) = î([c], [d]) for all c, d in

this basis.

(iii) If {a1, b1, . . . , ag, bg} is a symplectic basis for H1(Σb
g;Z), then there exists a

geometric symplectic basis {α1, β1, . . . , αg, βg} with [αi] = ai and [βi] = bi for
all i.

From here the proof goes as follows: given any M ∈ Sp(2g,Z) and symplectic basis
B, apply M to B to get a new basis B′. Using (iii) realize B and B′ as two geometric
symplectic bases A,A′. By (ii), there exists an element f ∈ Mod(Σb

g) taking A to
A′. Therefore, Ψ(f) takes B to B′. Since the action in (i) is simply transitive, this
implies that Ψ(f) = M .
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A neat consequence of this proposition is that the Humphries generating set given
earlier is “minimal”. To see this, we must define a transvection.

Definition 3. A transvection in Sp(2g,Z) is an element whose fixed set (in R2g) has
codimension 1.

We note that, by Proposition 3, the image of Dehn twists under Ψ are transvec-
tions. Next, we have maps

Mod(Σb
g)

Ψ
� Sp(2g,Z) � Sp(2g,Z/2Z).

The final tool required is a proposition of Humphries which says that at least
2g + 1 transvections are needed to generate Sp(2g,Z/2Z) (here a transvection of
Sp(2g,Z/2Z) is the image of a transvection in Sp(2g,Z) under the map above). Thus,
since the two maps above are surjective, we have shown that at least 2g + 1 Dehn
twists are needed to generate Mod(Σb

g). So, Humphries’ generating set is minimal
among generating sets consisting entirely of Dehn twists.

3 Torelli Group

In the previous section, we showed that Ψ : Mod(Σb
g) → Sp(2g,Z) is surjective.

However, Ψ is not injective in general. In fact, the kernel of Ψ is a heavily studied
object known as the Torelli group, denoted I(Σb

g). From our previous computations,
we can compute the Torelli group of several surfaces.

Example 5. If Σ = S2, D2, T 2, then I(Σ) = 1. Increasing complexity a bit, we
have I(Σ1

1) ∼= Z, where the generator is given by the Dehn twist about the boundary
component.

Once we venture a little further though, things get pretty messy, as seen by the
following theorem of Mess.

Theorem 3. The Torelli group of the genus 2 surface is an infinitely generated free
group.

Beyond these examples, there is no simple description for the Torelli group. So
what can be said about it? As a result of the Lefshetz fixed point theorem, we get:

Theorem 4. If g ≥ 0, b ∈ {0, 1}, then I(Σb
g) is torsion-free.

As we did for the mapping class group, it is helpful to describe some “nice”
elements of the Torelli group. There are two simple classes of elements:

(a) Separating twists: Dehn twists about separating curves.
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(b) Bounding Pair maps (BP maps): a map of the form TxT
−1
x′ , where x and x′ are

(isotopy classes of) homologous, nonhomotopic, non-nullhomotopic simple closed
curves.

Now we can ask, how much of the Torelli group do we get from separating twists
and bounding pair maps.

Theorem 5. (Powell) The Torelli group I(Σb
g) is generated by separating twists and

bounding pair maps for g ≥ 3.

However, there are infintely many separating twists and bounding pair maps. So,
is it possible to do any better? As it turns out, Johnson showed that any separating
twist is a product of bounding pair maps [Exercise]. Moreover, he showed that any
bounding pair map is a product of genus 1 bounding pair maps; that is, a bounding
pair map such that one of the components of the surface cut along the two simple
closed curves has genus 1 [Exercise]. Finally, he gave a finite (but gigantic) list of
bounding pair maps which generate the Torelli group.

Theorem 6. For g ≥ 3, the Torelli group I(Σb
g) is finitely generated by bounding

pair maps.

Again, the next obvious question becomes: is I(Σb
g) finitely presented? The answer

to this question is unknown. So how can we further study the Torelli group? The
Torelli group came about when we explored the action of Mod(Σb

g) on H1(Σb
g;Z); that

is, the first nilpotent truncation of π1(Σb
g). Therefore, to learn more about I(Σb

g), it
may be helpful to studying the action of I(Σb

g) on the second nilpotent truncation of
π1(Σb

g). In doing so, we will construct the Johnson homomorphism

4 Johnson homomorphism

LetH = H1(Σ1
g;Z) and π = π1(Σ1

g, ∗), where ∗ ∈ ∂Σ1
g (note: here we have restricted to

surfaces with one boundary component precisely so that we can choose our basepoint
on the boundary). Denote by γk(π) the k-th term in the lower central series for π;
that is, γ1(π) = π and γk(π) = [γk−1(π), π] for all k ≥ 2. The goal of this section will
be to construct a homomorphism τ : I(Σ1

g)→
∧3H.

We have a short exact sequence

1→ γ2(π)→ π → H→ 1.

Modding out by γ3(π), we get the short exact sequence

1→
∧2
H → π/γ3(π) = Γ→ H→ 1.

Here, we are using the fact that γ2(π)/γ3(π) ∼=
∧2H. Also, note that

∧2H < Γ is
central.

5



Next, there is an action of Mod(Σ1
g) on π which preserves γk(π) (all automorphisms

of π do this). Therefore, this action descends to an action of Mod(Σ1
g) on Γ which

preserves
∧2H < Γ. We claim that the restriction of this action to an action of

I(Σ1
g) on

∧2H is trivial (this requires checking to make sure the action of Mod(Σ1
g)

on
∧2H is what you think it is). Therefore, if f ∈ I(Σ1

g) and x ∈ Γ, then x and

f(x) project to the same element of H. It follows that x(f(x))−1 ∈
∧2H. Therefore,

we get a set map J ′f : Γ →
∧2H defined by J ′f (x) = x(f(x))−1. Moreover, J ′f is a

homomorphism (this relies on the fact that
∧2H is central in Γ), so it factors through

the abelianization:

Γ
∧2H

H.

J ′
f

Jf

Define the map τ0 : I(Σ1
g) → Hom(H,

∧2H) via τ(f) 7→ Jf . Recall that we

wanted a map τ : I(Σ1
g)→

∧3H. To get this map, we first note that

Hom
(
H,
∧2
H
)
∼= H∗ ⊗

∧2
H ∼= H⊗

∧2
H.

Now, there is a canonical embedding of
∧3H into H⊗

∧2H given by

a ∧ b ∧ c 7→ a⊗ (b ∧ c) + b⊗ (c ∧ a) + c⊗ (a ∧ b),

and one can show that the image of τ0 is contained in the image of this embedding
[Exercise]. Therefore, we get our desired map τ : I(Σ1

g) →
∧3H which is called the

Johnson homomorphism. An involved computation gives:

Proposition 5. • If Tx is a separating twist, then τ(Tx) = 0.

• Suppose TxT
−1
x′ is a bounding pair map. Let Σ′ be the component of Σ1

g−{x, x′}
which does not contain the boundary of Σ1

g. Then there exists a subsurface
Σ′′ ⊂ Σ′ homeomorphic to Σ1

h for some 1 ≤ h < g. Let {a1, b1, . . . , ah, bh} be a
symplectic basis for Σ′′. Then τ(TxT

−1
x′ ) = ±[x] ∧ (a1 ∧ b1 + · · ·+ ah ∧ bh).

Playing around with the second formula, one can show:

Theorem 7. If g ≥ 2 then τ is surjective.

Let K(Σ1
g) be the subgroup of I(Σ1

g) generated by separating twists. Since
∧3H

is infinite for g ≥ 3, we get the following corollary.

Corollary 1. If g ≥ 3, then K(Σ1
g) has infinite index in I(Σ1

g).

From Proposition 5, it is clear that K(Σ1
g) ⊆ ker(τ). A deep result of Johnson

shows that the reverse inequality is also true.
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Theorem 8. The kernel of τ is generated by separating twists.

As a final remark, since the theme of this talk has been finiteness properties, we
cite a recent result of Church, Ershov, and Putman.

Theorem 9. If g ≥ 4, then K(Σ1
g) is finitely generated.

7


	Mapping Class Group
	Symplectic Representation
	Torelli Group
	Johnson homomorphism

