USING TQFT'S TO SHOW FACTS ABOUT ALGEBRA

HARI RAU-MURTHY

1. Introduction and review of framed bordism

Our goal today is to use the fact that $\pi_{1}(S O(3)) \cong \mathbb{Z} / 2$ to show that for any tensor category \mathcal{C}, the quadruple dual $\mathcal{C}^{* * * *} \simeq \mathcal{C}$. We begin with some review.

Definition 1.1. Fix an ambient dimension n. Given any $k \leq n$ and a manifold M of dimension k, a stable up-to-n framing of M is a trivialization of $T M^{k} \oplus \epsilon^{n-k}$.

Example 1.2. Given an embedding $\nu: M^{k} \hookrightarrow \mathbb{R}^{n}$, then the normal bundle $\nu(f)$ can be used to define a stable up-to- n framing of M^{k} since $T M \oplus \nu(f) \cong T \mathbb{R}^{n}$.
Definition 1.3. Suppose we are given a $(k+1)$-dimensional manifold B^{k+1} with boundary $\partial B^{k+1}=$ $M_{1}^{k} \sqcup-M_{2}^{k}$ where M_{1} and M_{2} are stable up-to- n framed and $-M_{2}$ means we invert the normal direction inside \mathbb{R}^{n}. Then B^{k+1} is said to be a framed bordism if
(1) B has a stable up-to- n framing, and
(2) B induces the correct stable up-to- n framings on M_{1} and M_{2}.

We can equip bordism categories with this additional structure.
Definition 1.4. The 2-category Bord $d_{0}^{2-f r}$ has objects disjoint unions of framed points $p t_{+}$and $p t_{-}$ where + and - refer to the framing being counterclockwise $(+)$ and clockwise $(-)$, 1-morphisms are framed bordisms between these objects, and 2-morphisms are framed bordisms between 1-morphisms rel endpoints.

This 2-category is a monoidal 2-category with monoidal structure given by disjoint union \sqcup and unit \emptyset.

We now specify the target category for our TQFT.
Definition 1.5. The target category \mathcal{C} is the 2-category where objects are algebras, 1 -morphisms are biomodules ${ }_{A} M_{B}$, and 2-morphisms are bimodule homomorphisms. This is a monoidal 2-category under tensor product.

Consider symmetric monoidal functors in $\operatorname{Fun}^{\otimes}\left(\operatorname{Bord}_{0}^{2-f r}, \mathcal{C}^{\otimes}\right)$. Note that $F\left(p t_{+}\right)$is dual to $F\left(p t_{-}\right)$in the following sense. There are maps

$$
\begin{aligned}
& F(\emptyset) \rightarrow F\left(p t_{+}\right) \otimes F\left(p t_{-}\right), \\
& F\left(p t_{-}\right) \otimes F\left(p t_{+}\right) \rightarrow F(\emptyset)
\end{aligned}
$$

corresponding to the usual cup/ U-shaped bordisms, and the composite of these corresponding to the S-shaped bordism is equivalent to the composite corresponding to the trivial bordism by "straightening out" the S-shaped bordism. Therefore we have a map

$$
\text { Fun }^{\otimes}\left(\text { Bord }_{0}^{2-f r}, \mathcal{C}^{\otimes}\right) \rightarrow \text { core }\left(\text { dualizable objects of } \mathcal{C}^{\otimes}\right)=: X
$$

where core (-) takes the subcategory of invertible morphisms. This is an ∞-groupoid and we may regard both sides as sufficiently structured (e.g. topological categories, ∞-categories).

Exercise 1.6. Show that this map is an equivalence.

2. How does $O(2)$ come in?

There is an $O(2)$-action on both ides of the map above, e.g. we have maps

$$
O(2) \rightarrow \operatorname{Aut}(X)
$$

where $A u t(X)$ is the category of endofunctors of X. In fact, the map can be made $O(2)$-equivariant (in the appropriate sense). An element $\gamma \in \pi_{1}(O(2))$ is sent to a path from the identity functor $I d_{X}$ to itself, i.e. a natural transformation $I d_{X} \Rightarrow I d_{X}$. In the bordism category, if we apply γ to the trivial framed bordism it inserts a loop/curly-Q; we'll call this bordism Q.

Say that $1 \in \pi_{1}(O(2))$ maps to a natural transformation S. Let's compute $S_{A}=F(Q)$. We can do this by analyzing each piece of Q. The evaluation map $e v$ coming from the left elbow gives a map $F\left(p t_{+}\right) \otimes F\left(p t_{-}\right) \rightarrow F(\emptyset)$ and the coevaluation map coming from the right elbow $e v_{L}$ gives a $\operatorname{map} F(\emptyset) \rightarrow F\left(-\left(p t_{-} \sqcup p t_{+}\right)\right) \simeq F\left(p t_{+}\right) \otimes F\left(p t_{-}\right)$.

Exercise 2.1. Show that $e v_{L}$ is left-adjoint to ev in the sense of higher category theory (as defined in Tim's talk). To recall, if $f: c \rightarrow d$ and $g: d \rightarrow c$ are 1-morphisms, then f is left-adjoint to g if there are 2 -morphisms $\eta: I d_{C} \Rightarrow f g$ and $\epsilon: g f \Rightarrow I d_{d}$ such that

$$
\left(f \Rightarrow i d_{c} \circ f \stackrel{\eta \circ i d}{\Rightarrow} f g \circ f \stackrel{i d \circ \epsilon}{\Rightarrow} f\right)=I d_{f}
$$

as 2-morphisms.
Example 2.2. Let $\mathcal{C}=V$ ect. Let $V \in V e c t$ and let V be dual to V^{*} under \otimes. Then $\operatorname{Hom}(V,-) \in$ $B V e c t_{1}$ is adjoint to $-\otimes V$ and $\operatorname{Hom}(V,-)=\otimes V^{*}$. In particular, the dual to V is V^{*}.

We now want to evaluat $F(Q)_{A}$ where $A \in \mathcal{C}_{0}$ is an algebra.
Exercise 2.3. Prove the following:
(1) The dual to A is $A^{o p}$.
(2) The evaluation is given by $A^{o p} \otimes A A_{k}$.
(3) The left-adjoint to evaluation is ${ }_{k} H o m(A, k) A^{A^{o p} \otimes_{k} A}$.

Compose to show that

$$
S_{A}={ }_{A} \operatorname{Hom}(A, k)_{A} .
$$

3. 3-CATEGORIES

Unfortunately, this doesn't buy us enough to achieve the goal we set out with. However, if we pass to the 3-categorical setting, we can proceed as follows.

Definition 3.1. Define a 3-category by setting its objects to be tensor categories, its 1-morphisms to be bimodules $\mathcal{C} M_{\mathcal{C}^{\prime}}$, its 2 -morphisms to be functors, and its 3 -morphism to be natural transformations.

Example 3.2. Consider the category of modules over $\mathbb{C}[G]$ where G is a group, denoted $M o d_{\mathbb{C}[G]}$. Given G-representations V and W, we can form $V \otimes W$ which is a G-representation by letting G act diagonally. This gives a module structure to $V \otimes W$.

Then we can think of the bordism Q as stable up-to- 3 framed, and

$$
\pi_{1}(O(3)) \ni 1 \mapsto F(Q)_{\mathcal{C}}={ }_{\mathcal{C}} \mathcal{C}_{\mathcal{C}^{* *}}
$$

Since $2 \cdot 1=0 \in \mathbb{Z} / 2$, we see that

$$
\mathcal{C}_{\mathcal{C}^{* *}} \otimes_{\mathcal{C}^{* *}} \mathcal{C}_{\mathcal{C}^{* * * *}} \cong_{\mathcal{C}} \mathcal{C}_{\mathcal{C}^{* * * *}} \cong_{\mathcal{C}} \mathcal{C}_{\mathcal{C}}
$$

This implies that the action on $\mathcal{C}^{* * * *}$ on \mathcal{C} is the same as the action of \mathcal{C} on \mathcal{C}, and this implies that

$$
\mathcal{C}^{* * * *} \cong \mathcal{C}
$$

Exercise 3.3. Work out the details and technicalities of the last section.

