TOPOLOGICAL MODULAR FORM THEORY VIA QUANTUM FIELD THEORIES?

STEPHAN STOLZ

1. Introduction

This is a report on work with Peter Teichner over the past few years.

2. (Topological) modular forms

Definition 2.1. Suppose that $\mathfrak{h} \xrightarrow{f} \mathbb{C}$ is a complex-valued function on the upper half plane. It is an integral weak modular form of degree n (equivalently weight $n / 2$) if
(1) f is holomorphic,
(2) for each $\tau \in \mathfrak{h}$, we have $f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{n / 2} f(\tau)$ where a, b, c, d are entries in a matrix in $S L_{2}(\mathbb{Z})$, and
(3) for each $\tau \in \mathfrak{h}$, we have a Laurent series expansion called the q-expansion of the form

$$
f(\tau)=\sum_{k=-N}^{\infty} a_{k} q^{k},
$$

and
(4) (integrality) for all k, we have $a_{k} \in \mathbb{Z}$,

We will denote the group of weak integral modular forms of degree n by $M F_{n}$. Putting all of these together defines a graded ring

$$
M F_{*}:=\bigoplus_{n \in \mathbb{Z}} M F_{n} .
$$

Remark 2.2. Note that if we consider the matrix $(1,1,0,1)$, then we see that $f(\tau+1)=f(\tau)$. Therefore in particular f factors through the quotient

$$
\mathfrak{h} / \mathbb{Z} \xrightarrow{f} \mathbb{C} .
$$

Note that the quotient $\mathfrak{h} / \mathbb{Z}$ is holomorphically equivalent to the punctured 2 -disk $\stackrel{\circ}{D}^{2}$ via the assignment

$$
[\tau] \mapsto q:=e^{2 \pi i \tau} .
$$

This motivates condition (3) above.
There are various constructions of topological modular forms. Today we are interested in the periodic topological modular forms spectrum TMF. There is a map

$$
\pi_{*} T M F \rightarrow M F_{*}
$$

which is rationally an isomorphism.
We know the right-hand side explicitly. We have

$$
M F_{*} \cong \mathbb{Z}\left[c_{4}, c_{6}, \Delta\right] /\left(c_{4}^{3}-c_{6}^{2}=2^{6} \cdot 3^{3} \cdot \Delta\right)
$$

where $\left|c_{4}\right|=8,\left|c_{6}\right|=12$, and $|\Delta|=24$. After imposing the "weak" condition on modular forms, we obtain

$$
M F_{*} \cong\left(\mathbb{Z}\left[c_{4}, c_{6}, \Delta\right] /\left(c_{4}^{3}-c_{6}^{2}=2^{6} \cdot 3^{3} \cdot \Delta\right)\right)\left[\Delta^{-1}\right]
$$

which is periodic with periodicity element Δ.
It turns out that $\pi_{*} T M F$ is also periodic - it has periodicity element Δ^{24}.

3. Connections between physics and topology

Let M be a closed string n-manifold, where "string" means we have a trivialization of $\left.T M\right|_{M^{(4)}}$. In topology, this gives a class $[M] \in \Omega_{n}^{S t r i n g} \cong \pi_{n} M$ String. By the work of Ando-Hopkins-Rezk, there is a string orientation map

$$
\pi_{n} M \text { String } \rightarrow \pi_{n} T M F
$$

We then have the map above

$$
\pi_{n} T M F \rightarrow M F_{n}
$$

If one traces $[M]$ all the way through these, we obtain a modular form $W(M) \in M F_{n}$ called the Witten genus.

On the other hand, we can define the Witten genus using physics, although possibly less rigorously. Witten conjectured the existence of a field theory called the nonlinear σ-model of M called σ_{M}. This is supposed to be an element in the space $2 \mid 1-E F T_{n}$, i.e. it is a degree n Eucliden field theory of dimension $2 \mid 1$. It turns out that in this case, we only care about the connected component of the space σ_{M} lies in. Therefore we can reduce to studying π_{0}. The partition function

$$
\pi_{0}\left(2 \mid 1-E F T_{n}\right) \xrightarrow{Z} M F_{n}
$$

gives a map to $M F_{n}$, and the claim is that $Z\left(\sigma_{M}\right)=W(M)$.
In diagramatic form, we have

What does this suggest about the relationship between TMF and field theories? Note that $\pi_{n}(T M F)$ may be thought of as $\pi_{0}\left(T M F_{n}\right)$ where $T M F_{n}$ is the n-th space in the Ω-spectrum $T M F$. This motivates the following conjecture:

Conjecture 3.1.

$$
T M F_{n} \simeq 2 \mid 1-E F T_{n}
$$

4. Field theories

Definition 4.1. A Euclidean field theory of dimension 2 and degree 0, abbreviated 2-EFT, is a symmetric monoidal functor

$$
2-\text { EBord } \rightarrow \text { Vect }
$$

where the left-hand side is the bordism category of Euclidean 2-manifolds and the right-hand side is the category of topological vector spaces.
Remark 4.2. By "Euclidean 2-manifold," we mean oriented 2-manifolds equipped with a flat Riemannian metric. Equivalently, we can view these as manifolds equipped with the rigid geometry given by $\left(\mathbb{R}^{2}, \mathbb{R}^{2} \rtimes S O(2)\right)$ where \mathbb{R}^{2} on the first part is the model space and $\mathbb{R}^{2} \rtimes S O(2)$ is the group where transition functions come from, where \mathbb{R}^{2} corresponds to translation and $S O(2)$ corresponds to rotation.

Definition 4.3. Let E be a 2-EFT. Note that we can only evaluate on flat torii $T_{\ell, \tau}$ obtained as quotients

$$
T_{\ell, \tau} \cong \mathfrak{h} / \mathbb{Z}\{\ell \tau, \ell\}
$$

where $\ell \in \mathbb{R}_{>0}, \tau \in \mathfrak{h}$. The partition function of E is defined by

$$
Z_{E}: \mathbb{R}_{>0} \times \mathfrak{h} \rightarrow \mathbb{C}
$$

$$
(\ell, \tau) \mapsto E\left(T_{\ell, \tau}\right)
$$

The partition function can be shown to be smooth. Further, we know that $S L_{2}(\mathbb{Z})$ acts on \mathfrak{h}. In fact, we can produce an action

$$
\begin{gathered}
S L_{2}(\mathbb{Z}) \times\left(\mathbb{R}_{>0} \times \mathfrak{h}\right) \rightarrow \mathbb{R}_{>0} \times \mathfrak{h} \\
(g,(\ell, \tau)) \mapsto\left(|c \tau+d| \ell, \frac{a \tau+b}{c \tau+d}\right)
\end{gathered}
$$

One can show that there is an isometry

$$
T_{g(\ell, \tau)} \cong T_{(\ell, \tau)}
$$

Therefore the partition function Z_{E} is $S L_{2}(\mathbb{Z})$-invariant.
Definition 4.4. A $2 \mid 1$-EFT \hat{E} is a symmetric monoidal functor

$$
\hat{E}: 2 \mid 1-\text { EBord } \rightarrow \text { Vect }
$$

where the left-hand side is the category of Euclidean 2|1-manifolds and Vect is the category of $\mathbb{Z} / 2$-graded topological vector spaces.
Remark 4.5. By "Euclidean 2|1-manifold,", we mean manifolds modeled on $\left(\mathbb{R}^{2 \mid 1}, \mathbb{R}^{2 \mid 1} \rtimes \operatorname{Spin}(2)\right)$. Note that the translation part $\mathbb{R}^{2 \mid 1}$ is not abelian - this produces some interesting phenomena.

The composite

$$
2-\text { EBord }_{\text {Spin }} \xrightarrow{-\times \mathbb{R}^{0 \mid 1}} 2 \mid 1-\text { EBord } \xrightarrow{\hat{E}} \text { Vect }
$$

defines a 2-EFT E associated to \hat{E}. We can then define

$$
Z_{\hat{E}}:=Z_{E} \in C^{\infty}\left(\mathbb{R}_{>0} \times \mathfrak{h}\right)
$$

Theorem 4.6. Let \hat{E} be a 2|1-EFT. Then
(1) $Z_{\hat{E}}(\ell, \tau)$ is independent of ℓ, and
(2) $Z_{\hat{E}} \in M F_{0}$.

This defines a map

$$
\pi_{0}(2 \mid 1-E F T) \rightarrow \pi_{0}(T M F)
$$

which is the $n=0$ case of what we wanted!
Outline of proof. We want to understand

$$
2-E B \text { ord } \xrightarrow{E} \text { Vect. }
$$

An interesting object of the left-hand side is the circle S_{ℓ}^{1} of length ℓ. Suppose this maps to $V:=E\left(S_{\ell}^{1}\right)$. What are the interesting morphisms? These are cylinders obtained by taking the quotient

$$
C_{\ell, \tau}:=\mathfrak{h} / \mathbb{Z}\{\ell \tau\},
$$

i.e. bordisms from S_{ℓ}^{1} to itself. This maps to $E\left(C_{\ell, \tau}\right) \in \operatorname{End}(V)$, and allows us to define a map

$$
\begin{aligned}
\mathfrak{h} & \rightarrow \operatorname{End}(V), \\
\tau & \mapsto E\left(C_{\ell, \tau}\right)
\end{aligned}
$$

which turns out to be a homomorphism from the abelian semigroup \mathfrak{h} to the group $\operatorname{End}(V)$. We can then think of the left-hand side \mathfrak{h} as the moduli space of cylinders. There is an inclusion

$$
\mathfrak{h} \subseteq \hat{\mathfrak{h}}
$$

from \mathfrak{h} into the moduli space of 2|1-cylinders, and this is compatible with the homomorphism

$$
\hat{\mathfrak{h}} \rightarrow \operatorname{End}(V)
$$

Moreover, both of these maps are smooth. Therefore we can differentiate to obtain a diagram of Lie algebras

Let $\frac{\partial}{\partial z} \mapsto L_{0}$ and $\frac{\partial}{\partial \bar{z}} \mapsto \overline{L_{0}}$ be the images of the generators under the top horizontal map. We have

$$
\operatorname{Lie}(\hat{\mathfrak{h}})=\operatorname{Lie}(\mathfrak{h}) \oplus \mathbb{C} Q \cong \operatorname{Lie}\left(\mathbb{R}^{2 \mid 1}\right)
$$

with bracket

$$
\frac{1}{2}[Q, Q]=Q^{2}=\frac{\partial}{\partial \bar{z}}
$$

The key point, then, is that $\frac{\partial}{\partial \bar{z}}$ becomes the square-root of an element. Therefore if we say that

$$
Q \mapsto \bar{G}_{0}
$$

then we obtain the relation ${\overline{G_{0}}}^{2}=\overline{L_{0}}$.
Finally, we want to calculate

$$
Z_{\hat{E}}(\ell, \tau)=Z_{E}(\ell, \tau)=E\left(T_{\ell, \tau}\right) \in \mathbb{C}
$$

Above, we were calculating $E\left(C_{\ell, \tau}\right) \in \operatorname{End}(V)$. What is the relationship? If we glue the ends of the cylinder together we obtain a torus; algebraically, this corresponds to the (super)trace and we obtain

$$
E\left(T_{\ell, \tau}\right)=\operatorname{str}\left(E\left(C_{\ell, \tau}\right) .\right.
$$

We then find that

$$
V=\bigoplus V_{a, b}
$$

where the sum runs over $a \in \operatorname{Spec}\left(L_{0}\right)$ and $b \in \operatorname{Spec}\left(\bar{L}_{0}\right)$. Thus we see that

$$
Z_{\hat{E}}(\ell, \tau)=\sum \operatorname{str}\left(\left.E\left(C_{\ell, \tau}\right)\right|_{V_{a, b}}\right)
$$

The action of L_{0} and $\overline{L_{0}}$ are given by q^{a} and \bar{q}^{b}. We then have

$$
\sum \operatorname{str}\left(\left.E\left(C_{\ell, \tau}\right)\right|_{V_{a, b}}\right)=\sum q^{a} \cdot \bar{q}^{b} \cdot \operatorname{sdim}\left(V_{a, b}\right)
$$

where the superdimension $\operatorname{sdim}\left(V_{a, b}\right)=\operatorname{dim}\left(V_{a, b}^{+}\right)-\operatorname{dim}\left(V_{a, b}^{-}\right)$is zero for $b \neq 0$ - this follows from observing that we have

$$
\bar{G}_{0}: V_{a, b}^{+} \rightarrow V_{a, b}^{-}
$$

and this is an isomorphism, which can be seen by applying \bar{G}_{0} and \bar{L}_{0} in appropriately. We conclude that

$$
Z_{\hat{E}}(\ell, \tau)=\sum_{a \in \operatorname{Spec}\left(L_{0}\right)} q^{a} \cdot \operatorname{sdim} V_{a, 0}
$$

Further, $a \in \mathbb{Z}$. This expression then implies that we have an integral modular form.

