
TOPOLOGICAL MODULAR FORM THEORY VIA QUANTUM FIELD

THEORIES?

STEPHAN STOLZ

1. Introduction

This is a report on work with Peter Teichner over the past few years.

2. (Topological) modular forms

Definition 2.1. Suppose that h
f→ C is a complex-valued function on the upper half plane. It is an

integral weak modular form of degree n (equivalently weight n/2) if

(1) f is holomorphic,
(2) for each τ ∈ h, we have f(aτ+b

cτ+d ) = (cτ + d)n/2f(τ) where a, b, c, d are entries in a matrix in

SL2(Z), and
(3) for each τ ∈ h, we have a Laurent series expansion called the q-expansion of the form

f(τ) =

∞∑
k=−N

akq
k,

and
(4) (integrality) for all k, we have ak ∈ Z,

We will denote the group of weak integral modular forms of degree nby MFn. Putting all of these
together defines a graded ring

MF∗ :=
⊕
n∈Z

MFn.

Remark 2.2. Note that if we consider the matrix (1, 1, 0, 1), then we see that f(τ + 1) = f(τ).
Therefore in particular f factors through the quotient

h/Z f→ C.

Note that the quotient h/Z is holomorphically equivalent to the punctured 2-disk
◦
D

2

via the assign-
ment

[τ ] 7→ q := e2πiτ .

This motivates condition (3) above.

There are various constructions of topological modular forms. Today we are interested in the
periodic topological modular forms spectrum TMF . There is a map

π∗TMF →MF∗

which is rationally an isomorphism.
We know the right-hand side explicitly. We have

MF∗ ∼= Z[c4, c6,∆]/(c34 − c26 = 26 · 33 ·∆)

where |c4| = 8, |c6| = 12, and |∆| = 24. After imposing the “weak” condition on modular forms, we
obtain

MF∗ ∼= (Z[c4, c6,∆]/(c34 − c26 = 26 · 33 ·∆))[∆−1]
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which is periodic with periodicity element ∆.
It turns out that π∗TMF is also periodic - it has periodicity element ∆24.

3. Connections between physics and topology

Let M be a closed string n-manifold, where “string” means we have a trivialization of TM |M(4) .
In topology, this gives a class [M ] ∈ ΩStringn

∼= πnMString. By the work of Ando-Hopkins-Rezk,
there is a string orientation map

πnMString → πnTMF.

We then have the map above
πnTMF →MFn.

If one traces [M ] all the way through these, we obtain a modular form W (M) ∈ MFn called the
Witten genus.

On the other hand, we can define the Witten genus using physics, although possibly less rigorously.
Witten conjectured the existence of a field theory called the nonlinear σ-model of M called σM . This
is supposed to be an element in the space 2|1− EFTn, i.e. it is a degree n Eucliden field theory of
dimension 2|1. It turns out that in this case, we only care about the connected component of the
space σM lies in. Therefore we can reduce to studying π0. The partition function

π0(2|1− EFTn)
Z→MFn

gives a map to MFn, and the claim is that Z(σM ) = W (M).
In diagramatic form, we have

M (M)

(σM ) Z(σM ) W (M)Z =

What does this suggest about the relationship between TMF and field theories? Note that
πn(TMF ) may be thought of as π0(TMFn) where TMFn is the n-th space in the Ω-spectrum
TMF . This motivates the following conjecture:

Conjecture 3.1.
TMFn ' 2|1− EFTn.

4. Field theories

Definition 4.1. A Euclidean field theory of dimension 2 and degree 0, abbreviated 2-EFT, is a
symmetric monoidal functor

2− EBord→ V ect

where the left-hand side is the bordism category of Euclidean 2-manifolds and the right-hand side
is the category of topological vector spaces.

Remark 4.2. By “Euclidean 2-manifold,” we mean oriented 2-manifolds equipped with a flat Rie-
mannian metric. Equivalently, we can view these as manifolds equipped with the rigid geometry
given by (R2,R2 oSO(2)) where R2 on the first part is the model space and R2 oSO(2) is the group
where transition functions come from, where R2 corresponds to translation and SO(2) corresponds
to rotation.

Definition 4.3. Let E be a 2-EFT. Note that we can only evaluate on flat torii T`,τ obtained as
quotients

T`,τ ∼= h/Z{`τ, `}
where ` ∈ R>0, τ ∈ h. The partition function of E is defined by

ZE : R>0 × h→ C,
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(`, τ) 7→ E(T`,τ ).

The partition function can be shown to be smooth. Further, we know that SL2(Z) acts on h. In
fact, we can produce an action

SL2(Z)× (R>0 × h)→ R>0 × h,

(g, (`, τ)) 7→ (|cτ + d|`, aτ + b

cτ + d
).

One can show that there is an isometry

Tg(`,τ)
∼= T(`,τ).

Therefore the partition function ZE is SL2(Z)-invariant.

Definition 4.4. A 2|1-EFT Ê is a symmetric monoidal functor

Ê : 2|1− EBord→ V ect

where the left-hand side is the category of Euclidean 2|1-manifolds and V ect is the category of
Z/2-graded topological vector spaces.

Remark 4.5. By “Euclidean 2|1-manifold,”, we mean manifolds modeled on (R2|1,R2|1 oSpin(2)).
Note that the translation part R2|1 is not abelian - this produces some interesting phenomena.

The composite

2− EBordSpin
−×R0|1

−→ 2|1− EBord Ê→ V ect

defines a 2-EFT E associated to Ê. We can then define

ZÊ := ZE ∈ C∞(R>0 × h).

Theorem 4.6. Let Ê be a 2|1-EFT. Then

(1) ZÊ(`, τ) is independent of `, and
(2) ZÊ ∈MF0.

This defines a map

π0(2|1− EFT )→ π0(TMF )

which is the n = 0 case of what we wanted!

Outline of proof. We want to understand

2− EBord E→ V ect.

An interesting object of the left-hand side is the circle S1
` of length `. Suppose this maps to

V := E(S1
` ). What are the interesting morphisms? These are cylinders obtained by taking the

quotient

C`,τ := h/Z{`τ},
i.e. bordisms from S1

` to itself. This maps to E(C`,τ ) ∈ End(V ), and allows us to define a map

h→ End(V ),

τ 7→ E(C`,τ )

which turns out to be a homomorphism from the abelian semigroup h to the group End(V ). We
can then think of the left-hand side h as the moduli space of cylinders. There is an inclusion

h ⊆ ĥ

from h into the moduli space of 2|1-cylinders, and this is compatible with the homomorphism

ĥ→ End(V ).
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Moreover, both of these maps are smooth. Therefore we can differentiate to obtain a diagram of Lie
algebras

Lie(h) End(V )

Lie(ĥ)

⊆

Let ∂
∂z 7→ L0 and ∂

∂z̄ 7→ L̄0 be the images of the generators under the top horizontal map. We
have

Lie(ĥ) = Lie(h)⊕ CQ ∼= Lie(R2|1)

with bracket
1

2
[Q,Q] = Q2 =

∂

∂z̄
.

The key point, then, is that ∂
∂z̄ becomes the square-root of an element. Therefore if we say that

Q 7→ Ḡ0,

then we obtain the relation Ḡ0
2

= L̄0.
Finally, we want to calculate

ZÊ(`, τ) = ZE(`, τ) = E(T`,τ ) ∈ C.
Above, we were calculating E(C`,τ ) ∈ End(V ). What is the relationship? If we glue the ends of
the cylinder together we obtain a torus; algebraically, this corresponds to the (super)trace and we
obtain

E(T`,τ ) = str(E(C`,τ ).

We then find that
V =

⊕
Va,b

where the sum runs over a ∈ Spec(L0) and b ∈ Spec(L̄0). Thus we see that

ZÊ(`, τ) =
∑

str(E(C`,τ )|Va,b
).

The action of L0 and L̄0 are given by qa and q̄b. We then have∑
str(E(C`,τ )|Va,b

) =
∑

qa · q̄b · sdim(Va,b)

where the superdimension sdim(Va,b) = dim(V +
a,b) − dim(V −a,b) is zero for b 6= 0 - this follows from

observing that we have
Ḡ0 : V +

a,b → V −a,b

and this is an isomorphism, which can be seen by applying Ḡ0 and L̄0 in appropriately. We conclude
that

ZÊ(`, τ) =
∑

a∈Spec(L0)

qa · sdimVa,0.

Further, a ∈ Z. This expression then implies that we have an integral modular form. �


