
Notre Dame Graduate Student Topology Seminar, Spring 2018

Lecture 2: Supersymmetric field theories

2.1 The goal

The goal of the rest of this minicourse it to begin to describe a result from Stolz and Teichner.
They have the following classification:

Theorem 1. [3], [2] For smooth manifolds X, one has the natural group isomorphisms:

0|1-EFTn(X) ∼=

{
Ωev
cl (X), n even

Ωodd
cl (X), n odd

When you pass to concordance classes, you get the following isomorphisms:

0|1-EFTn[X] ∼=

{
Hev

dR(X), n even

Hodd
dR (X), n odd

Conjecture 1. It is known that the space of 1|1-EFT’s is homotopy equivalent to BO × Z,
which leads to the following conjecture:

1|1-EFTn[X] ∼= KOn(X)

Conjecture 2. [3] There is an isomorphism 2|1-EFTn[X] ∼=TMFn(X), compatible with the
multiplicative structure.

Definition 1. Two field theories E0, E1 ∈ d|δ-EFTn(X) are concordant if there exists a field
theory E′ ∈ d|δ-EFTn(X × R) and an ε > 0 such that E′ ∼= p∗1(E0) on X × (−∞, ε) and
E′ ∼= p∗1(E1) on X × (1− ε,∞).

Note: passing to concordance classes forgets geometric information while remembering
topological information (for example, two closed n-forms are concordant iff they represent the
same de Rham cohomology class; two vector bundles with connection are concordant iff they
are isomorphic).

Stolz and Teichner have been working on this project for many years, so I don’t intend to
go into the more complicated details of it. (Perhaps someone else can speak about the formal
group relationships between HdR(X),K(X) and TMF (X) in one of the later talks.) For this
minicourse, I’m just going to focus on the 0|1-dimensional case. I’m also just going to consider
the topological version, not the Euclidean one (perhaps how the geometry is incorporated into
the bordism category by using collars could also be a topic for a future talk). But I think
even this simple case will be helpful for illustrating how these twisted, supersymmetric field
theories work. For the topological version, we have the following classification:

Theorem 2. For X ∈ Man, there are natural group isomorphisms, compatible with multi-
plication:

0|1-TFTn(X) ∼= Ωn
cl(X)

Taking concordance classes, one gets the following isomorphisms:

0|1-TFTn[X] ∼= Hn
dR(X)
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Over the next few weeks, my goal is to unpack this most basic case of the theorem: the
relationship between 0|1-TFT[X] and de Rham cohomology. Even though in this simple case
some of the extra structure might seem more complicatedly phrased than necessary, I want to
describe these structures of supersymmetric, twisted field theories in general, such that they
apply to the higher dimensional cases.

There are several additional levels of complexity that we will need to add to the basic
definition of a functorial field theory that we discussed last time:

• supersymmetry

• field theories where the categories are family versions of the ones we discussed before

• field theories over a manifold X

• twisted field theories/field theories of a higher degree

To build up to describing this theorem, I’m going to start today by discussing the supersym-
metric part: requiring the manifolds in the bordism category to be supermanifolds. In physics,
the motivation for supersymmetric field theories comes from wanting to describe systems that
have symmetries between particles of different statistics (e.g. bosons and fermions).

2.2 Supermanifolds

An ordinary manifold M can be described by a pair (M,OM ), where M is the underlying
topological space, and OM is the structure sheaf of the manifold (the sheaf of smooth func-
tions). For ordinary manfolds, the structure sheaf is a sheaf of commutative algebras.

In an analogous way, we will define supermanifolds in terms of their sheaf of functions:
but in this case the sheaf of functions is a sheaf of commutative superalgebras.

Definition 2. A commutative superalgebra A ∈ SAlg is a Z/2-graded vector space A =
Aev ⊕ Aodd, with a multiplication map m : A ⊗ A → A, a ⊗ b 7→ ab and unit map u : k → A
such that

ab = (−1)|a|·|b|ba

where |a| is the parity of a homogeneous element of A, |a| =

{
0, if a ∈ Aev

1, if a ∈ Aodd

Example 1. Any commutative algebra is a commutative superalgebra, with only an even
part. For example, R[t1, ..., tp] ⊂ C∞(Rp).

Example 2. Exterior algebras: Λ∗(Rq) =
⊕∞

k=0 Λk(Rq)
Λ[θ1, ..., θq] = exterior algebra generated by odd elements, θi; θi ∧ θj = (−1)θj ∧ θi

Example 3. R[t1, ..., tp]⊗ Λ[θ1, ..., θq] ⊂ C∞(Rp)⊗ Λ[θ1, ..., θq]

Example 4. Differential forms: LetX ∈Man. One can decompose Ω∗(X) =
⊕∞

k=0C
∞(X,Λk(T ∗X))

as Ω∗(X) = Ωev(X)⊕ Ωodd(X). The wedge product give the multiplicative structure for this
as a commutative superalgebra.
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Definition 3. A supermanifold M of dimension p|q is a pair (|M |,OM ) where:

• |M | is a topological space of dimension p (called the ‘reduced manifold’)

• OM is a sheaf of commutative superalgebras such that

(|M |,OM ) ∼=
locally

(Rp, C∞(Rp)⊗ Λ[θ1, ..., θq]) =: Rp|q

Note that because we have partitions of unity, we can just look at the global sections; in
what follows I will write C∞(M) for OM (M).

The morphisms in the category of supermanifolds (SMan) are maps between these ringed
spaces. Since working with maps involving sheaves is more messy, we’ll use the following
proposition as giving a more convenient description of the morphism sets.

Proposition 1. For M,N ∈ SMan,

SMan(M,N) := SAlg(C∞(N), C∞(M))

where the morphisms in SAlg are superalgebra homomorphisms which are grading preserving.

Example 5. In the definition of supermanifolds, we already saw the most basic example of
one of dimension p|q: Rp|q := (Rp, C∞(Rp)⊗ Λ[θ1, ..., θq].

Example 6. An ordinary p-manifold M = (Mp,OM ) ∈ Man is a supermanifold of purely
even dimension, i.e. a supermanifold of dimension p|0.

Example 7. Let E → Xp be a R-vector bundle of rank q. Then one can form the algebra
bundle of alternating multilinear forms on E: Λ(E∗) → X. Taking the sheaf of sections of
this bundle as the structure sheaf gives a supermanifold (X,C∞(X,Λ(E∗))) =: ΠE, which we
call the parity reversed bundle. This is a supermanifold of dimension p|q.

To see why this is the case, consider the trivial bundle E = Rp × Rq → Rp = X. The
structure sheaf of ΠE for this bundle is: C∞(Rp,Λ((Rq)∗)) = C∞(Rp) ⊗ Λ[θ1, ..., θq]. Since
every vector bundle is locally isomorphic to the trivial bundle, the claim follows.

In fact, every supermanifold is isomorphic to ΠE for some vector bundle E. (This is
Batchelor’s Theorem.)

Example 8. In particular, let’s look at the tangent bundle TX → Xp. Then ΠTX =
(X,C∞(ΠTX)), where C∞(ΠTX) = C∞(X,ΛT ∗X) = Ω∗(X) ⇒ ΠTX = (X,Ω∗(X)) is a
supermanifold of dimension p|p.

This gives a first relationship between differential forms and supermanifolds; however,
differential forms have more structure than simply being a superalgebra–there is a Z-grading
and a differential. Do these extra structures appear in the supermanifold picture? To see
them, we’ll need to look at mapping spaces of supermanifolds.
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2.3 Generalized supermanifolds

Ideally, we would like the mapping space to again be a supermanifold. However, this is not
the case (even in the case of ordinary manifolds, Man(M,N) /∈Man if dim(M) 6= 0).

Our solution will be to pass to a larger category that does have these mapping spaces (i.e.
has internal hom’s); we will call this the category of generalized supermanifolds. We form
this category by taking the Yoneda embedding of our category SMan into the category of
presheaves on SMan:

SMan −→ Fun(SManop, Set)

X 7−→ SMan(−, X) =: X(−)

Definition 4. The category of generalized supermanifolds is the functor category

ŜMan := Fun(SManop, Set).

Note that because the Yondeda embedding is fully faithful, SMan(−, X) completely deter-
mines X up to isomorphism, and vice versa, so we don’t lose information about supermanifolds
by passing to the generalized supermanifold category.

Also, note that the category of generalized supermanifolds has internal hom objects: for
Y,Z ∈ SMan, define the internal hom object SMan(Y, Z) := SM(−× Y,Z) ∈ ŜMan.

Another advantage of the category of generalized supermanifolds is the functor of points
approach. Because the Yoneda embedding gives us a bijection between:

SM(X,Y )←→ {Φ : X(−)⇒ Y (−)}

we have a much easier way of comparing two supermanifolds X,Y . If we want to tell whether
X and Y are isomorphic, the above bijection tells us that it suffices to look at the natural
transformations between the associated generalized supermanifolds. Each natural transfor-
mation η : X(−) ⇒ Y (−) is a collection of maps ηS : X(S) → Y (S), ∀S ∈ SMan. These ηS
are maps between sets. So if we want to tell whether X ∼= Y , instead of comparing sheaves,
which is more messy and complicated, the question can be reduced to determining whether
set maps between the S-point sets of X and Y are bijections, which is an easier question.

We will use this functor of points approach to give an alternative description of the differen-
tial forms Ω∗(X), which will be relevant to the 0|1-TFT-classification theorem this minicourse
is discussing. From this description we will also see where the additional structure on the dif-
ferential forms (the differential operator and the grading operator) come from in this more
geometric, supermanifold picture. To see this relationship, we’re going to first look at a few
examples of the S-points of some particular generalized supermanifolds.

2.4 Calculating S-points and comparing supermanifolds

Proposition 2. SMan(R0|1,R0|1) ∼= R1|1.
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Proof. We will prove this by comparing S-points. We want to show there is a bijection

SMan(R0|1,R0|1)(S)←→ R1|1(S)

which is natural in S ∈ SMan.
On the left hand side, we have

SMan(R0|1,R0|1)(S) = SMan(S, SMan(R0|1,R0|1))

= SMan(S × R0|1,R0|1)

∼= SAlg(C∞(R0|1), C∞(S × R0|1))

= SAlg(Λ[θ], C∞(S)[θ])

The isomorphism between lines 2 and 3 works by sending g ∈ SMan(S × R0|1,R0|1) to

g∗ : Λ[θ]→ C∞(S)[θ]

θ 7→ g∗(θ) = g1 + g0θ

where g1 ∈ C∞(S)odd, g0 ∈ C∞(S)ev.
On the right hand side, we have

R1|1(S) = SMan(S,R1|1)

∼= SAlg(C∞(R1|1), C∞(S))

= C∞(S)odd × C∞(S)ev

The desired bijection is given by taking

SMan(R0|1,R0|1)(S)←→ R1|1(S)

g 7−→ (g1, g0)

Actually, SMan(R0|1,R0|1) has more structure: composition gives it a monoidal structure.
If we pay attention to the monoidal structure, we get:

Proposition 3. SM(R0|1,R0|1) ∼= R0|1 o R as monoids. The monoidal structure works as:
g ◦ g′ 7→ (g1 + g0g

′
1, g0g

′
0).

Recall that every supermanifold is isomorphic to ΠE for some vector bundle E. The
S-points of a vector bundle are given in the following proposition:

Proposition 4. Let E be a vector bundle of rank q over a manifold X of dimension p. Then
the S-points of the p|q-supermanifold ΠE are

ΠE(S) := {(x, v)|x ∈ X(S), v ∈ Eodd
x }

where Ex := C∞(S, x∗E).
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(See Stephan’s notes on Equivariant de Rham cohomology and gauged field theories, Ex-
ample 5.34.2, for more details.[4])

In particular, for the tangent bundle TX → X we have (ΠTX)(S) = {(x, v)|x ∈ X(S), v ∈
TxX

odd}.

Proposition 5. For any X ∈ SMan, SMan(R0|1, X) ∼= ΠTX.

Proof. We again show this using the S-point formalism. Please see Propn 5.24 in Stephan’s
notes for details. [4]

Note that SMan(R0|1,R0|1) acts on SMan(R0|1, X) by precomposition:

Proposition 6. Let X ∈ SM .

µ : SMan(R0|1, X)× SMan(R0|1,R0|1)→ SMan(R0|1, X)

is given on S-points by
((x, v), (g1, g0)) 7→ (x+ g1v, g0v)

2.5 Differential forms

Recall that ΠTX = (X,C∞(ΠTX)) = (X,Ω∗(X)). Also, we saw in Propn 5 that ΠTX ∼=
SMan(R0|1, X).

⇒ So C∞(SMan(R0|1, X)) ∼= Ω∗(X), as superalgebras.

The extra structure that Ω∗(X) has (the differential operator, and the Z-grading) corre-
spond to the generators of Lie(Diff(R0|1)).

Note that Diff(R0|1) ∼= R0|1 o R× ⊂ SMan(R0|1,R0|1) is a Lie group. In what follows,

let G = Diff(R0|1),M = SM(R0|1, X).

Proposition 6 gave us an action of G on M : µ : M × G → M . From this, we can get

an action of G on C∞(M) : C∞(M)×G→ C∞(M), by sending (f, g) 7→ (m 7→ µ(m, g)
f7−→ R).

This gives a Lie group homomorphism: G → C∞(M). Differentiating this gives a Lie
algebra homomorphism: Lie(G)→ End(C∞(M)).

Proposition 7. Lie(G) = R〈N,Q〉, where N is the even generator, Q is the odd generator.

(For more details, again see Stephan’s notes, Propositions 5.35, 5.36. [4])
The action of Lie(G) = R〈N,Q〉 on C∞(M) = Ω∗(X) gives the desired operators:

Proposition 8.

Lie(G) −→ End(Ω∗(X))

N 7−→ (ω 7→ kω)

Q 7−→ (ω 7→ dω)

for ω ∈ Ωk(X).
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2.6 Problem Session:

Exercise 1. Work through/discuss the details of Propns 5, 7, 8.

Exercise 2. (For Hari:) Let A be a superalgebra. Define a bracket on A by [−,−] : Der(A)⊗
Der(A) → Der(A), [D,E] := D ◦ E − (−1)|D||E|E ◦ D. Show that this gives Der(A) the
structure of a super Lie algebra. [From [4], Hmwk 2.8.]

Definition 5. A super Lie algebra is a Z/2-graded vector space g = g0 ⊕ g1 with a bilinear
map [−,−] : g× g→ g which is

1. skew-symmetric in the graded sense: [a, b] = −(−1)|a||b|[b, a], for homogeneous elements
a, b ∈ g

2. satisfies the graded version of the Jacobi identity: [a, [b, c]] = [[a, b], c]+(−1)|a||b|[b, [a, c]]

Definition 6. Let A be a superalgebra. A linear map D : A → A (not necessarily parity
preserving) is a derivation of parity |D| ∈ Z/2 if

D(ab) = (Da)b+ (−1)|D||a|a(Db).

Write Der(A) = Derev(A)⊕Derodd(A), a Z/2-graded vector space.
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