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Lecture 3: Field theories over a manifold, and
smooth field theories

As mentioned last time, the goal is to show that

0|1-TFTn(X) ∼= Ωn
cl(X),

0|1-TFTn[X] ∼= Hn
dR(X)

Last time, we showed that:

Ω∗(X) ∼= C∞(ΠTX)

∼= C∞(SMan(R0|1, X)

Today I want to introduce two other ingredients we’ll need:

• field theories over a manifold

• smoothness of field theories via fibered categories

3.1 Field theories over a manifold

Field theories over a manifold X were introduced by Segal. The idea is to give a family of field
theories parametrized by X. Note that this is a general mathematical move that is familiar;
for example, instead of just considering vector spaces, we consider families of vector spaces,
i.e. vector bundles, which are families of vector spaces parametrized by a space, satisfying
certain additional conditions. In the vector bundle example, we can recover a vector space
from a vector bundle E over a space X by taking the fiber Ex over a point x ∈ X. The first
thing we will discuss is how to extract a field theory as the “fiber over a x ∈ X” from a family
of field theories parametrized by some manifold X.

Recall that in Lecture 1, we discussed the non-linear sigma-model as giving a path integral
motivation for the axioms of functorial field theories. The 1-dimensional non-linear sigma
model with target Mn did the following:

σM : 1−RBord −→ V ect

pt 7−→ C∞(M)

[0, t] 7−→ e−t∆M : C∞(M)→ C∞(M)

The Feynman-Kan formula gave us a path integral description of this operator: for x ∈M ,
we had

(e−t∆f)(x) =

∫
{φ:[0,t]→X|φ(t)=x}

f(φ(0))
eS(φ)Dφ

Z

If instead of having just one target manifold M , how does this change when one has a
whole family of manifolds {Mx}?
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A first naive approach might be to simply take this X-family of Riemannian manifolds,
{Mx}. However, this does not depend smoothly on X so we wouldn’t be taking advantage of
all of the data that we can introduce here. Instead (analogous to the move from vector spaces
to vector bundles), we want to produce a fiber bundle out of these manifolds, i.e. we want to
set E :=

⊔
x∈XMx

π−→ X.

Note that this total space has an induced Riemannian metric. From this additional struc-
ture of the fiber bundle, we get additional structure when we translate to the functorial field
theory picture: we want:

E : 1-RBord(X) −→ V ect

objects : x 7→ C∞(Mx)

morphisms : ([0, 1]
γ−→ X) 7→ E(γ) : C∞(Mγ(0))→ C∞(Mγ(t))

To define this E(γ), we want to generalize the Feynman-Kac formula: for f ∈ C∞(Mx), z ∈
My,

((E(γ))f)(z) =

∫
{φ:[0,t]→M |π◦φ=γ}

f(φ(0))
eS(φ)Dφ

Z

This type of generalization of the non-linear sigma model inspires the definition of a field
theory over X.

Definition 1. Let X be a manifold. A field theory over X is a symmetric monoidal functor

E : d-Bord(X)→ V ect

where d-Bord(X) is the bordism category as before, where all objects and morphisms are

are equipped with smooth maps to X. (Note that having a bordism Σ
f−→ X from Y0

f0−→ X

to Y1
f1−→ X then means that the f agrees with f0, f1 when restricted to the corresponding

boundaries.)

Example 1. To see what this idea of a field theory over X gives us, consider 0-dimensional
field theories:

0-TFT(X) = Fun(0-Bord(X), V ect).

Note that there is only one (−1)-dimensional object: ∅. This is the monoidal unit in the
bordism category, so it must be sent to R: E(∅) = R.
Next, consider the morphisms: 0-Bord(X)(∅, ∅) 7→ R. Remember that 0-Bord(∅, ∅) are dif-
feomorphism classes of 0-dimensional bordisms, so here we’re just looking at disjoint unions
of points. Becuase a TFT is a symmetric monoidal functor, its action will be completely
determined by what it does on one point. So on the left hand side, the relevant bordism to
look at is {pt→ X} ∼= X. Because of monoidal unit reasons, we know E must send this to R.
Thus, 0-TFT(X) ∼= Maps(X,R). Note that there is no smoothness or continuity requirement
on these maps!
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We would like to be able to have smoothness or continuity requirements on the maps we
saw above...how would we incorporate this? What would it mean for E to be smooth? Heuris-
tically, we want E(Y ), E(Σ) to depend smoothly on Y,Σ, respectively. To implement this, we
will replace the the previous source and target categories of our field theories d-Bord, V ect by
their family versions.

3.2 Family versions of categories

In what follows, we will use the language of fibered categories as in Section 2.7 of Stolz-
Teichner’s paper “Supersymmetric field theories and generalized cohomology.” We first recall
the definition:

Definition 2. Let B and S be categories. We say that a functor p : B → S is a (Grothendieck)
fibration if pull-backs exist. That is, for every object Z ∈ B and arrow f : S → T = p(Z) in
S, there is a cartesian square

Y Z

S T.

φ

f

A fibered category over S is a category B together with a fibration B → S.

The following example illustrates how one can extract the fiber over an object using fibered
categories.

Example 2. Let s ∈ S be an object and let p : B → S be a category fibered over S. . We
define a subcategory Bs of B by setting the objects to be the set of b ∈ B such that p(x) = s,
and the morphisms to be the set of maps f : b→ b′ such that p ◦ f = ids.

Another example is described in Section 2.7 of Stolz-Teichner:

Example 3. The forgetful functor p : Bun→ Man sending a smooth vector bundle Y → S
to the underlying manifold S is a Grothendieck fibration. The key point is that one can
construct the desired pullbacks using the pullback of fiber bundles.

We can use fibered categories to make sense of field theories parametrized by a manifold
X.

Definition 3. Define the category d-Bordf parametrized over Man as follows. The objects
are families of d-manifolds over a manifold, i.e. fiber bundles p : Y → S where the fibers are
closed (oriented) (d-1)-manifolds. The morphisms are families of bordisms Σ→ S.

Definition 4. Define the category V ect parametrized over Man as follows. The objects are
families of vector spaces over a manifold S, i.e. a vector bundle V → S. The morphisms are
families of linear maps.

In this language, a TFT is then a fibered (symmetric monoidal) functor between these
fibered categories.

In order to extend this definition to d|δ-TFT’s, we want to use the language of stacks.
Before doing so, we need to discuss Grothendieck topologies and sites.
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Definition 5. Let C be a category. A Grothendieck topology on C is an assignment to each
object U ∈ C a collection of sets of arrows {Ui → U}, called coverings of U , such that the
conditions in Definition 2.24 of Vistoli’s “Notes on Grothendieck topologies, fibered categories,
and descent theory” are satisfied. Roughly speaking, these conditions say that open coverings
are compatible with each other in the way classical open covers of manifolds are compatible.

A category equipped with a Grothendieck topology is a site.

We can now define stacks.

Definition 6. Let B → S be a fibered category on a site S. We say that B is a stack over
S if for each covering {Ui → U} in S, the functor B(U)→ B({Ui → U}) is an equivalence of
categories.

Here, the notation B(−) should be thought of in the case where B = Bun and S = Man.
In this case, B(U) associates to a manifold U the fiber bundles over it and the condition that
B(U)→ B({Ui → U}) be an equivalence of categories says that a fiber bundle over U can be
built out of fiber bundles on some open cover {Ui → U}. Equivalently, one can also think of a
stack as a pseudofunctor from a site S to the 2-category of categories which satisfies descent
for all covers.

In particular, we can recover a fibered category from a stack by forgetting about the
Grothendieck topology data on the site. We will occasionally define fibered categories as
psuedofunctors, i.e. by specifying categories C0 and C1 fibered over S with functors between
them.

Now, we’d like to define families of TFT’s parametrized by a generalized supermanifold X.
The naive extension would be to say that the source category for these TFT’s is the category
of d|δ-dimensional bordisms with maps to X. However, this runs into the same problem as
above since it doesn’t require smoothness anywhere. For today, let SMan denote the category
of generalized supermanifolds.

Definition 7. We define the fibered category of d|δ-Bordf → SMan as a pseudofunctor
as follows. Let S ∈ SMan. Define (d|δ-Bordf )0(S) to be the category with objects fiber
bundles p : Y → S with fibers (d − 1)|δ-manifolds, and morphisms the obvious commuting
squares. Define (d|δ-Bordf )1(S) to be the category with objects fiber bundles Σ → S with
fibers d|δ-bordisms, and morphisms commuting squares.

Example 4. When d = 0 and δ = 1, we have

(0|1−Bordf )0(S) = {∅ → S},

(0|1−Bordf )1(S) = {Σ→ S : fibers are 0|1-closed bordisms}.

Definition 8. Let X ∈ Man. A d|δ-dimensional (smooth) supersymmetric field theory over
X is a fibered symmetric monoidal functor over the category of generalized supermanifolds:

E : d|δ-Bordf (X)→ V ectf .

Example 5. Let’s see what this extra structure gives us.

1. Let E : d|δ-Bord→ V ect be a field theory. Take Σ a closed d-manifold. Then we know
that E(Σ) ∈ R.
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2. Now let’s add the structure of being a field theory over X: Fix X ∈ Man. To Σ, we
add a map f : Σ→ X. Now E : d|δ-Bord(X)→ V ect, will map E(Σ, f) ∈ R.

3. Now let’s add the structure of being a supersymmetric (smooth) field theory over X:
Let E : d|δ-Bordf (X) → V ectf . For this one, let’s change our source bordism a bit;
now consider

map(Σ, X)× Σ

π

��

ev // X

map(Σ, X)

Here π exhibits map(Σ, X) × Σ as a map(Σ, X)-family of supermanifolds; in addition,
they are equipped with a smooth map to X.

Applying E to this, we get

E

(
map(Σ, X)× Σ

π

��

ev // X

map(Σ, X)

)
∈ C∞(map(Σ, X),R).

Example 6. Taking Σ = R0|1 in the last example, we get E(−) ∈ C∞(ΠTX,R) = Ω∗(X).

Note that (along similar lines to the argument in example 1), in the case of 0|1-TFT(X),
the only −1|1-dimensional object is ∅; and so the 0|1-dimensional bordisms are all disjoint
unions of points; and because of symmetric monoidal reasons, it suffices to look at what the
field theory does to one point, R0|1. In other words, E ∈ 0|1-TFT(X) is determined by what
it does on

map(R0|1, X)× R0|1

π
��

ev // X

map(R0|1, X).

We will identify this action through a series of steps.
First, note that if M ∈ SMan and G is a super Lie group with Gy X, then we can form

the quotient stack M//G → SMan which is in particular a fibered category of SMan. For
this, we will need our identification that we established last time: Diff(R0|1) ∼= R0|1 o R×.
Then we have

(M//G)0(S) = {principal G-bundles over S, with a G-equivariant map from the total space to M},

(M//G)1(S) = {maps of principal G-bundles}.

Last time, we saw that for X a supermanifold, there is an action

G = Diff(R0|1) yM = SMan(R0|1, X).
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We claim that the quotient stack M//G is a substack of 0|1 − Bordf (X). Indeed, it is not
hard to see that there is a bijection between principal G-bundles and diagrams of the form

P ×G R0|1 X

S.

Now, it is a fact (which we will not prove) that M//G freely generates 0|1−Bordf (X) as
a symmetric monoidal stack. One can use this to prove the following:

Proposition 1 (Propn 5.5 in HKST). Let X ∈Man.

0|1-TFT(X) = Fun⊗(0|1-Bordf (X), R)

∼= FunSMan(SMan(R0|1, X)//Diff(R0|1),R)

∼= SMan(SMan(R0|1, X),R)Diff(R0|1)

∼= Ω0
cl(X) = {f ∈ C∞(X)|df = 0}

Proof. Recall identification we made last week

Diff(R0|1) ∼= R0|1 oR×.

We showed in the exercise session that

Lie(Diff(R0|1)) ∼= R〈t d
dt
, t
d

dθ
〉.

In particular, given ω ∈ Ωk(X), the first operator sends it to k · ω and the second operator
sends it to dω.

Claim: the invariants of the Diff(R0|1) action are the same as the things annihilated by

the Lie(Diff(R0|1)) action.

Since the kernel of the action of Lie(Diff(R0|1)) consists of closed 0-forms, we conclude
the proposition.

3.3 Exercises

1. Work out the details of how the fibered bordism category is a pseudofunctor. How do
psuedofunctors relate to stacks and fibered categories? In the case of the 0|1-dimensional
bordism category, write these details out more explicitly (what is the category we’re
looking at in this case?).

2. Show that

Fun(SMan(R0|1, X)//Diff(R0|1),R) ∼= SMan(SMan(R0|1, X),R)Diff(R0|1).

3. Show that
SMan(SMan(R0|1, X),R)Diff(R0|1) ∼= Ω∗(X)Diff(R0|1).

In particular, show that it suffices to look at the annihilator of the Lie algebra action.
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