Problems

Jens Jakob Kjaer

February 21, 2018

Definition 0.1. For any vector space V, and W we get a map $V^{\vee} \otimes W \rightarrow \text{Hom}(V, W)$. We say that $\mathcal{L} \in \text{Hom}(V, W)$ is nuclear if it is in the image of this map.

- 1. Show that $\mathcal{L}: V \to W$ is thick if and only if it is nuclear.
- 2. Show that $\operatorname{Conf}^{fin} \subset \operatorname{Conf}$ is a homotopy equivalence.
- 3. Show that composition is well defined in the category Q.

Definition 0.2. If (\mathcal{C}, \oplus) is a symmetric monoidal category, then define $\mathcal{C}^{-1}\mathcal{C}$ by having objects pairs $(C_+, C_-) \in ob\mathcal{C}^2$ and morphisms (A, a_+, a_-) with $A \in ob\mathcal{C}$, and $a_{\pm} : C_{\pm} \oplus A \to D_{\pm} \oplus A$.

Definition 0.3. Define the category Q by having objects super vector subspaces of some fixed infinitely dimensional super inner product space H. And a morphism from $V \to W$ exists only if $V \subset W$, and consists of the data of $\beta : V^{\perp} \to V^{\perp}$ an odd involution for $V^{\perp} \subset W$.

- d. Show that if C is the groupoid of finite dimensional vector spaces, then $C^{-1}C$ is equivalent to Q.
- e. Construct a homeomorphism $BQ \to \text{Conf}^{fin}$.

Theorem 0.4. If C is a symmetric monoidal groupoid then BC is a E_{∞} -space. Further $B(C^{-1}C)$ is the group completion of BC

vi. Argue that $BQ \simeq \mathbb{Z} \times B\mathcal{O}$.

Riemannian bordisms need to satisfy the following condition: i_j^+ are isometric embeddings into $\Sigma - i_1(W_1^- \cup W_1^c)$.

Consider the following two 1- Riemannian manifolds, L_t and R_t below, of Length t

Figure 1: L_t and R_t

- 7. Show that R_t is a bordism for t > 0, and L_t is a bordism for $t \ge 0$
- 7. Show that as a symmetric monoidal category 1-RBord is generated by the point, R_t for t > 0 and L_0 , subject to they are both symmetric, and $R_{t_1+t_2} = R_{t_1} \circ_{L_0} R_{t_2}$.