
2|1-EUCLIDEAN FIELD THEORIES AND TOPOLOGICAL MODULAR FORMS

1. Partition functions and moduli stacks

In order to understand TMF and its connection to 2|1-EFT’s, we will use the language of moduli
stacks. These have appeared implicitly in the previous weeks, since a fibered category is part of the
data of a stack (see Week 3 notes). Given a d|δ-TFT E, its partition function will be defined as a
function ZE :M→ C from some moduli stackM associated to d|δ-TFT’s to the complex numbers.

1.1. Partition functions. Let’s start by defining partition functions for d-TFT’s. Let E be a
d-TFT, so E associates a topological vector space E(M) to every (d − 1)-dimensional manifold
and associates a continuous linear map E(Σ) : E(M1) → E(M2) to any d-dimensional bordism
Σ : M1 → M2. If we consider only closed bordisms Σ (i.e. morphisms from the empty manifold to
the empty manifold) then E(Σ) : C→ C is just a complex number.

Let Md denote the moduli stack of connected closed d-manifolds. In other words, a map from a
space X →Md determines a family of connected closed d-manifolds over X.

Definition 1.1. The partition function of E, denoted ZE , is the function

Md → C

defined by

Σ 7→ E(Σ).

These partition functions have played a fundamental role in the previous weeks’ results.

Example 1.2. The moduli stack of closed 0-manifoldsM0 consists of a single point (the one-point
bordism). Since E is symmetric monoidal, the value of the partition function ZE : M0 → C is
determined by the value of E on the one-point bordism.

In this case, 0-TFT’s are determined by their partition functions since the only (−1)-dimensional
manifold is the empty manifold and therefore all morphisms in 0−Bord are closed. When we move
to the supersymmetric case, i.e. 0|1-TFT’s, we needed to compute the value of partition functions
on superpoints R0|1. It was the identification of these values in Week 2 that allowed us to relate
0|1-TFT’s with the de Rham complex.

The story became more complicated in Week 5 when we discussed 1|1-EFT’s, since there are
substantially connected 1-manifolds than connected 0-manifolds.

Example 1.3. The moduli stack M1 is more complicated than M0. One simplification we made
was to consider the moduli stack ME

1 of closed Euclidean 1-manifolds. In this case, Euclidean
just means that everything is equipped with a flat Riemannian metric, so in particular bordisms
have lengths. The Euclidean 1-bordisms we were concerned with were intervals of specified length,
i.e. bordisms from a point to a point, and we studied the partition functions with domain this
moduli stack. Since E(It) specified an endomorphism of E(pt), the value of E on any bordism
was determined by its value on these intervals plus knowledge of E on elbows. In other words,
we identified 1-EFT’s by their “partition functions” from the moduli space of intervals. We then
considered the supersymmetric case, which imposed certain conditions (skew-adjoint Fredholm) on
the eigenvalues and eigenspaces of the operators in End(V ). We then identified the space of such
operators with BO × Z to obtain a relationship between 1|1-EFT’s and K-theory.
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As motivation for the definition of TMF and elliptic cohomology, let’s consider partition functions
for 2|1-EFT’s. As in the previous weeks, we begin by studying 2-TFT’s. In this case, the moduli
stack of closed connected 2-manifolds M2 is difficult to understand. For example, it contains all
genus g surfaces.

We can simplify this picture by restricting to 2-EFT’s. Then the moduli stack of closed Euclidean
2-manifolds ME

2 consists of closed 2-manifolds equipped with a flat Riemannian metric. By the
Gauss-Bonnet Theorem, every such 2-manifold is a flat torus. In other words, we only need to
consider the values of E on the moduli stack of flat tori Mtori. Any such torus can be obtained as
the quoteint of C by a lattice Λ, and any such lattice is determined by a choice of vector τ ∈ H in
the upper half-plane by the assignment τ 7→ Z{1, τ}.

What happens when we impose supersymmetry? Before discussing this, we need to introduce
another moduli stack. An elliptic curve over the complex numbers is the set of solutions to an
equation of the form

y2 = x3 +Ax+B

where A,B ∈ C. It turns out that each elliptic curve is isomorphic (as Riemann surfaces) to a
torus C/Z{1, τ} where τ is some complex number in the upper half plane H. Two elliptic curves
are isomorphic if there exists an element g ∈ SL2(Z) such that τ = gτ ′ where SL2(Z) acts on H via
fractional linear transformations.

Definition 1.4. The moduli stack of elliptic curves is the quotient stack

Mell := H//SL2(Z).

Any flat torus T = C/Λ with Λ = Z{1, τ} gives rise to an elliptic curve Cτ , so we have a surjection

Mtori �Mell.

This map is not an equivalence, since flat tori with different volume (i.e. different choice of τ) often
correspond to the same elliptic curve. Nevertheless, the moduli stack of elliptic curves plays an
important role in the study of partition functions for 2|1-EFT’s.
Theorem 1.5. [?] Let E be a 2|1-EFT. Then its partition function

ZE :Mtori → C

is holomorphic.

In other words, imposing supersymmetry takes us from the study of 2-EFT’s to the study of 2-
CFT’s (conformal field theories). We will see a proof of this theorem next week. Since identifications
of the partition functions in the previous weeks led us to de Rham cohomology and K-theory, we
have the following question:

Question 1.6. Is there a cohomology theory related to the moduli stack of elliptic curves?

2. Elliptic cohomology

In this section, we see that the answer to the question above is a resounding “yes.”

2.1. A crash course on formal group laws. The material in this subsection is mostly taken from
Rezk’s “Notes on the Hopkins-Miller Theorem” and the TMF book. Let R be a commutative ring.
A formal group law over R is a formal power series F (x, y) ∈ R[[x, y]] such that

(1) F (x, 0) = F (0, x) = x,
(2) F (x, y) = F (y, x),
(3) F (F (x, y), z) = F (x, F (y, z)).

Example 2.1. (1) The additive formal group law is defined by F (x, y) = x+ y.
(2) The multiplicative formal group law is defined by F (x, y) = x+ y + xy.



2|1-EUCLIDEAN FIELD THEORIES AND TOPOLOGICAL MODULAR FORMS 3

Definition 2.2. Suppose that R has characteristic p and let F be a formal group law over R. The
p-series of F is defined by

[p]F (x) = F (F (F (· · ·F (x, x), x), · · · ), x)“ = ”xp
n

+ axp
n+1 + · · · .

The number n is called the height of F .

Exercise 2.3. Show that the height of the additive formal group law is ∞ and the height of the
multiplicative formal group law is 1.

Formal group laws arise naturally in the study of “complex-oriented cohomology theories”.

Example 2.4. Using the Atiyah-Hirzebruch spectral sequence, one can show that HQ∗(CP∞) ∼=
HQ∗[[x]] where |z| = 2. The map CP∞ × CP∞ → CP∞ classifying the exterior tensor poduct of
two copies of the universal line bundle induces a map

HQ0[[z]]→ HQ0[[x, y]].

The generator z maps to a formal power series FHQ(x, y) which is a formal group law over HQ0

associated to HQ.

Exercise 2.5. Show that FHQ(x, y) is the additive formal group law over Q and that FKU (x, y) is
the multiplicative formal group law over Z.

Another large source of formal group laws are elliptic curves. In the exercise session, we will see
that elliptic curves can be equipped with an abelian group structure. It follows that each elliptic
curve C over R gives rise to a formal group law FC(x, y) over R. This formal group law has height
1 if C is an ordinary elliptic curve and height 2 if C is a supersingular elliptic curve. This defines a
map

Mell →MFG

from the moduli stack of elliptic curves to the moduli stack of formal groups. Moreover, this map is
flat. We refer the reader to Definition 3.4 of Hohnhold’s “The Landweber Exact Functor Theorem”
in the TMF book for a precise definition.

2.2. The Landweber exact functor theorem. One can define a cohomology theory called com-
plex cobordism MU which associates to a space X the abelian group of complex bordism classes of
manifolds over X with a complex linear structure on the stable normal bundle. Evaluating this on
a point gives the coefficient ring

MU∗ ∼= Z[b1, b2, . . .]

which by the work of Quillen is isomorphic to the Lazard ring L over which the universal formal
group Fu is defined. In other words, if R is a ring, then a ring homomorphism L → R specifies
a formal group over R. Conversely, any formal group over R gives rise to a ring homomorphism
L→ R. Let E∗(−) : Top→ Ab be defined by

E∗(X) := MU∗(X)⊗MU∗ R.

For which MU∗-modules R does this assignment define a homology theory? It’s clear that this
definition is homotopy invariant and satisfies additivity, so the only issue is with excision. One
obvious condition on R that makes E∗(−) a homology theory is flatness over MU∗, but in general
this is too strong a requirement in practice. The Landweber exact functor theorem gives a more
computable and realistic condition.

Theorem 2.6 (Landweber exact functor theorem). Suppose that for every prime p, there are ele-
ments v1, v2, . . . ∈ MU∗ so that if the sequence (p, v1, v2, . . . , vn) is a regular sequence for R for all
p and n. Then E∗(−) is a homology theory.

Equivalently, E∗(−) is a homology theory if and only if the morphism Spec(R)→MFG is flat.
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In the statement of the theorem, the elements v1, . . . , vn are defined as the coefficients vi := api
of the p-series of Fu viewed as a formal group law over Z(p)

[p]Fu
(x) =

∑
n≥1

anx
n.

We refer the reader to Landweber’s original paper for a proof of the first statement, and to the
TMF book for a proof of the second statement.

Exercise 2.7. Show that the additive formal group and the multiplicative formal groups give rise to
the homology theories HQ and KU , respectively.

We saw above that every elliptic curve over R corresponds to a map Spec(R) → Mell. If this
map is flat, then the composition Spec(R)→Mell →MFG is flat. In particular, we can apply the
Landweber exact functor theorem to obtain an homology theory

EllC,R∗ (X) := MU∗(X)⊗MU∗ R.

These are called elliptic cohomology theories.

3. From elliptic cohomology to TMF

Let’s pause to remember why we were interested in elliptic cohomology theories. We had seen that
studying partition functions of 0|1-EFT’s led us to de Rham cohomology, that partition functions of
1|1-EFT’s led us to K-theory, and that partition functions of 2|1-EFT’s led us to study functions on
the moduli stack of elliptic curves. Unlike in the 0|1- and 1|1-cases, we ended up with a huge class
of cohomology theories to choose from (one for each nice elliptic curve). Which elliptic cohomology
theory should be related to 2|1-EFT’s?

As we saw above, partition functions of 2|1-EFT’s don’t have a preferred elliptic curve. So, we
would like to say that 2|1-EFT’s are related to some “universal” elliptic cohomology theory which
arises from combining/gluing together all elliptic cohomology theories. The following theorem is due
to Goerss-Hopkins-Miller.

Theorem 3.1. There is a sheaf of E∞ ring spectra Otop on (the étale site of) the moduli stack of
elliptic curves Mell.

The spectrum of topological modular forms, denoted TMF , is the global sections of Otop.

Let’s try to understand this statement by relating it to what we did in previous weeks. In Week
3, we used the language of fibered categories to describe families of field theories over a generalized
supermanifold. Instead of thinking of families of field theories, we want to think of families of
elliptic cohomology theories, so we replace the fibered categories d|δ−Bord(X) by the moduli stack
of elliptic curves Mell. We need the additional data of a stack (which is in particular a fibered
category) to make sense of sheaves. If we define our Grothendieck topology (covers) nicely, then the
assignment above which takes an elliptic curve C defined by a flat map Spec(R) →Mell defines a
presheaf of elliptic cohomology theories.

We could do this for every ring R, in which case we obtain the Grothendieck site of flat affine
schemes over Mell. If this presheaf of elliptic cohomology theories is actually a sheaf, then roughly
speaking, we can recover the global sections as a homotopy limit of (families of) elliptic cohomology
theories arising from evaluating this sheaf on an open cover, i.e. by gluing together all elliptic
cohomology theories.

The phrase “E∞ ring” in the theorem also has a role when we think about twisted 2|1-EFT’s.
Implicit in the study of twisted 0|1-EFT’s and 1|1-EFT’s is multiplicative structure arising from
varying how twisted everything is. A similar phenomenon should occur for 2|1-EFT’s, and we can
ask that the corresponding cohomology theory have a compatible multiplicative structure. We refer
the reader to last semester’s GSTS notes for precise definitions of E∞ rings. In the case of TMF ,
the additional condition E∞ is used in Goerss-Hopkins obstruction theory to simplify the calculation
of certain terms in obstruction theory.
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With each phrase in the theorem somewhat motivated, we can now state the main conjecture:
Conjecture 3.2. [?, Conj. 1.17] There is an isomorphism

2|1− EFTnloc[X] ∼= TMFn(X)

compatible with the multiplicative structure.

4. Alternative motivation: The Steenrod algebra and stable homotopy theory

Recall that the mod p Steenrod algebra A is defined to be the Hopf algebra (over Fp) of stable
cohomology operations for mod p cohomology. When p = 2, the Steenrod algebra is generated by
the “Steenrod squares” Sqi with i ≥ 1 subject to relations called the Adem relations. One can define
A(d) to be the subalgebra of A generated by Sq1, Sq2, . . . , Sq2n

. For example, we have

A(−1) = {1},

A(0) = {1, Sq1},
A(1) = {1, Sq1, Sq2, Sq2Sq1, Sq3, Sq2Sq2, Sq2Sq1Sq2, Sq3Sq1, Sq2Sq2Sq2}.

If (Γ, k) is a Hopf algebra and Λ ⊂ Γ is a subalgebra of Γ, then we may define the Hopf algebra
quotient

Γ//Λ = Γ⊗Λ k.

Let H = HF2 denote mod 2 homology. Then we have

H∗(H) = A ∼= A//A(−1),

H∗(HZ) ∼= A//A(0),

H∗(ko) ∼= A//A(1),

where ko is the connective version of real topological K-theory and HZ is the spectrum represent-
ing homology with integer coefficients. Naturally, one should ask if there are cohomology theo-
ries/spectra with cohomology A//A(d) for all d ≥ −1. In particular, we see that the Hurewicz
image of each cohomology theory increases in the cases above as we increase d, so it would be nice
to be able to continue this pattern.

For d = 2, we can continue this pattern with a cohomology theory tmf called (connective)
topological modular forms. In other words, we have

H∗(tmf) ∼= A//A(2).

By the work of Davis-Mahowald, there cannot exist a cohomology theory E with cohomology
H∗(E) ∼= A//A(d) for d > 2, so in a sense tmf is the end of this story.

As we saw above, TMF does not have a geometric interpretation. If the conjecture above is
true, then we would be able to make various computations which are currently very difficult, e.g.
characteristic classes for TMF .

5. Exercises

(1) Show that every closed flat Riemannian 2-manifold is a flat torus.
(2) Complete the exercises listed in the notes above.
(3) Show that if E is complex orientable, then E∗(CP∞) ∼= E0[[z]] with |z| = 2. Relate this to

characteristic classes for E-cohomology.
(4) This exercise describes how to define the group law on an elliptic curve. For now, let’s work

over C. Fix an origin O on C and let P,Q ∈ C be two other points. Then P ⊕Q is defined as
follows. Let P ∗Q denote the unique third point of intersection of the line passing through
P and Q and the elliptic curve C. Then P ⊕Q is the unique third point of intersection of
the line passing through P ∗Q and O and the elliptic curve C. Draw a picture of an elliptic
curve over R and convince yourself through pictures (or the Riemann-Rock theorem) that
this is a group law.
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(5) This exercise describes how to obtain a formal group law from an elliptic curve. We refer
the reader to David Loeffler’s lecture notes on Elliptic Curves for details.
(a) In the affine coordinates z = −x/y and w = −1/y, any elliptic curve C has generalized

Weierstrass equation

w = z3 + (a1z + a2z
2)w + (a3 + a4z)w

2 + a6(w3) =: f(z, w).

The origin here is at w = 0. We can think of w as a function of z by repeatedly plugging
f(z, w) in for w above. The resulting power series is called w(z).
Show that w(z) has the form

w(z) = z3 + a1z
4 + (a2

1 + a2)z5 + (a1z
3 + 2a1a2 + a3)z6 + · · · .

(b) Using this power series, we can obtain points in in a neighborhood of the origin as
(w(z), z). If we have points (w1, z1) and (w2, z2) in this chart (where here we think
of z1, z2 as variables), let λ denote the slope of the line passing through them, and let
c = w1 − λz1, so we have w = λz + c. Substituting this into the Weierstrass equation,
we get a cubic in z with solutions. Show that the inverse of the sum of z1 and z2 is
given by

i(F (z1, z2)) =
a1z + a2c+ a3λ

2 + 2a4λc+ 3a6λ
2c

1 + a2λ+ a4λ2 + a6λ3
− z1 − z2.

(c) Conclude that
F (z1, z2) = −i(F (i(F (z1, z2)), 0))

is a formal group law.


