CLASSIFYING INVERTIBLE TFT'S VIA COHOMOLOGY

TJ WARNER

1. Invertible TFT's

Recall that last week Tim defined (∞, n)-categories which are certain n-fold simplicial spaces

$$
\mathcal{C}:\left(\Delta^{o p}\right)^{n} \rightarrow \text { Top }
$$

He defined the (∞, n)-category of d-bordisms $d-\operatorname{Bor}_{n}$, and defined TFT's as symmetric monoidal functors

$$
E: d-\operatorname{Bord}_{n} \rightarrow \mathcal{C}
$$

where \mathcal{C} is some symmetric monoidal category.
Example 1.1. Recall the $(\infty, 1)$-category of oriented 2 -bordisms, denoted $2-b o r d_{1}^{S O}$. We showed in teh first exercise session that any symmetric monoidal functor from there to $V e c t_{1}$ corresponds to a commutative Frobenius algebra over \mathbb{C}.

Exercise 1.2. What is Vect $_{1}$ as a functor $\Delta^{o p} \rightarrow$ Top?
Definition 1.3. An invertible TFT is a TFT which sends objects to \otimes-invertible objects and sends morphisms to invertible morphisms.

We want to define a target category where the only possible targets are invertible.
Definition 1.4. An ∞-Picard category is one in which all objects are \otimes-invertible and all morphisms are invertible.

Define $\operatorname{Pic}(\mathcal{C})$ to be the maximal ∞-Picard subcategory.
In other words, an invertible TFT is a functor which factors through $\operatorname{Pic}(\mathcal{C})$. From now on, we will denote Picard categories by E.

Exercise 1.5. Show that E is an ∞-Picard category if and only if the functor

$$
\left(\otimes, \operatorname{proj}_{1}\right): E \times E \rightarrow E \times E
$$

is an equivalence.
We saw above that oriented 2-dimensional TFT's correspond to commutative Frobenius algebras over \mathbb{C}. We want to know which of these are invertible. To figure this out, we observe that Pic $\left(\right.$ Vect $\left._{1}\right)$ has a single object \mathbb{C} and has morphisms \mathbb{C}^{\times}. In other words, invertible oriented 2-TFT's correspond to 1-dimensional commutative Frobenius algebras.
[[picture of unit, pair of pants, upside down pair of pants, and counit from last week]]
The bordisms above correspond to the structure maps in a Frobenius algebra.
Exercise 1.6. An invertible oriented 2-dimensional TFT Z_{1} satisfies $Z_{1}\left(\Sigma_{g}\right)=\mu^{1-g}$ where $\mu \in \mathbb{C}^{\times}$ is the value

Everything we have discussed so far only relied on the 1-categorical structure.
Definition 1.7. Define a 2 -category Vect $_{2}$ with objects natural numbers, morphisms $m \times n$ matrices of vector spaces, and 2 -morphisms $m \times n$ matrices of linear maps. Composition of 1 -morphisms is given by matrix multiplication where we use direct sum and tensor product.
$V e c t_{2}$ is a categorical delooping of $V e c t_{1}$ in the sense that

$$
\operatorname{Hom}(1,1)=\text { Vect }_{1} .
$$

Furthermore, we have $\operatorname{Pic}\left(V_{e c t}^{2}\right)$ has a single object 1, morphisms 1-dimensional vector spaces, and 2 -morphisms \mathbb{C}^{\times}. But then the category with objects the 1-morphisms of $\operatorname{Pic}\left(\right.$ Vect $\left._{2}\right)$ and morphisms the 2-morphisms of $\operatorname{Pic}\left(\right.$ Vect $\left._{2}\right)$ is just $\operatorname{Pic}\left(V e c t_{1}\right)$!

More generally, weh ave the following definition.
Definition 1.8. If \mathcal{C} is a symmetric monoidal (∞, n)-category, then define $B \mathcal{C}$ to be the $(\infty, n+1)$ category with one object $*$ and $\operatorname{Hom}(*, *)=\mathcal{C}$.

Example 1.9. We have $B\left(\operatorname{Pic}\left(V_{e c t_{1}}\right)\right) \simeq \operatorname{Pic}\left(V_{e c t_{2}}\right)$.
We now want to understand the diagram

We have already specified where the objects and 1-morphisms are sent, so we just need to understand 2 -morphisms. These can be determined by studying the following 2-morphism (see last week's notes for a bigger version):

We pick $\lambda \in \mathbb{C}^{\times}$and set $Z_{2}(\Sigma)=\lambda^{\chi(\Sigma)-\chi(Y)}$.

Exercise 1.10. This defines a TFT with

$$
Z_{2}\left(\Sigma_{2}\right)=\lambda^{\chi\left(\Sigma_{g}\right)}=\lambda^{2-2 g}=\left(\lambda^{2}\right)^{1-g}
$$

Note that $2-$ Bord $_{1}$ sits inside of $2-$ Bord $_{2}$, but to make this a map in categories, we need to take

$$
B\left(2-\text { Bord }_{1}\right) \rightarrow 2-\text { Bord }_{2}
$$

where the left-hand side sits inside as the morphisms of the empty manifold. Examining the variance of the above map shows that we obtain a map

$$
2-T Q F T_{2}^{i n v} \rightarrow 2-T Q F T_{1}^{i n v}
$$

At the level of commutative Frobenius algebras, this sends the number λ to the number λ^{2}. In other words, specifying further information via higher categories allows us to distinguish between λ and $-\lambda$.

We can inductively define higher categories $V e c t_{n}$ with $\operatorname{Pic}\left(V_{e c t_{n}}\right)$ having one thing in all levels, except in the n-th level we have \mathbb{C}^{\times}. We think of $\operatorname{Pic}\left(V_{e c t}^{n}\right)$ as a model for $K\left(\mathbb{C}^{\times}, n\right)$.

2. Classifying invertible TFT's

For our (∞, n)-categories, "morphisms being invertible" corresponds to "being equivalent to a constant multisimplicial space." This in turn is equivalent to being an ($\infty, 0$)-category above level n. Therefore we have the following key idea: Picard (∞, n)-categories model connective spectra. In particular, objects being invertible gives the group-like condition on the 0 -space, i.e. gives the structure of a group-like space (i.e. infinite loop space) and therefore a connective spectrum.

For E Picard, if we have a map

$$
d-\text { Bord }_{n} \rightarrow E,
$$

we can pass to geometric realization

$$
\left\|d-\operatorname{Bord}_{n}\right\| \rightarrow E
$$

Such maps then correspond to classes in

$$
\pi_{0} M a p_{E_{\infty}}\left(\left\|d-\operatorname{Bord}_{n}\right\|, E\right)
$$

which in turn correspond to classes in the E-cohomology of the spectrum associated to $\left\|d-B o r d_{n}\right\|$. Note that above $\|-\|$ is the fat realizaiton which can be thought of as taking sequential geometric realization with respect to each simplicial direction.

Remark 2.1. Although $d-$ Bord $_{n}$ is not grouplike, it becomes grouplike after taking geometric realization. In other words, this realization forces disjoint union to become invertible.

3. Madsen-Tillman spectra

From now on, we want to understand $d-\operatorname{Bord} n_{n}^{S O(d)}$. We begin by defining Madsen-Tillman spectra. Let γ_{d} be the tautological d-plane bundle and let $\gamma_{d}^{\perp}=\epsilon_{p+1}-\gamma_{d}$ be its complement. Consider the diagram

We have $i^{*}\left(\gamma_{d}^{\perp}\right) \cong \gamma_{d}^{\perp} \oplus \epsilon$, so taking Thom spaces we obtain maps

$$
\Sigma\left(T h\left(\gamma_{d}^{\perp}\right)\right) \xlongequal{\cong} T h\left(i^{*} \gamma_{d}^{\perp}\right)
$$

This defines a spectrum $M T S O(d)$ called the Madsen-Tillman spectrum defined by setting

$$
(M T S O(d))_{p}=\operatorname{Th}\left(\gamma_{d}^{p \perp}\right)
$$

Remark 3.1. The ' M ' above is the classical notation for Thom spectra, and the ' T ' is to remind us that there are tangential structures floating around.

These spectra are usually $(-d)$-connective.
Theorem 3.2 (Galatius-Madsen-Tillman-Weiss, Schommer-Pries). There is an equivalence of E_{∞} spaces

$$
\left\|d-\operatorname{Bord}_{n}\right\| \simeq \Omega^{\infty-n} M T S O(d)=\Omega^{\infty} \Sigma^{n} \operatorname{MTSO}(d)
$$

We now have the spectrum associated to $\left\|d-\operatorname{Bor}_{n}\right\|$. We need to compute its homotopy or cohomology.

Example 3.3. For $k<d$, we have a group isomorphism

$$
\pi_{k} \Sigma^{d} M T S O(d) \cong \Omega_{k}^{o r}
$$

We now want to compute cohomology with integer coefficients. Using the short exact sequence of groups

$$
\mathbb{Z} \rightarrow \mathbb{C} \rightarrow \mathbb{C}^{\times}
$$

we can recover the cohomology with coefficients in \mathbb{C}^{\times}which relates us back to Pic $\left(\right.$Vect $\left._{n}\right)$. We find that

$$
d-T Q F T_{n}^{i n v} \cong H^{d}\left(p_{\geq d-n} \Sigma^{d} M T S O(d) ; \mathbb{C}^{\times}\right)
$$

where $p_{\geq d-n}$ is the Postnikov cover which throws away homotopy groups below degree $d-n$.
It is also interesting to contemplate the comparison maps

$$
\begin{aligned}
& B\left(d-\operatorname{Bord}_{n}\right) \longrightarrow d-\operatorname{Bord}_{n+1} \\
& 2-T Q T F_{1}^{i n v} \longleftrightarrow 2-T Q F T_{2}^{i n v} \\
& 1-T Q F T_{1}^{i n v} \\
& d-\operatorname{Bord}_{n} \longrightarrow(d+1) \text { Bord }_{n+1}
\end{aligned}
$$

Example 3.4. - For $d=1,3$ and for any $n \leq d$, there is a unique TQFT.

- For $d=2$, there is a different TQFT for each element of \mathbb{C}^{\times}.
- For $d=4$, the different TQFT's are indexed by pairs of complex numbers in $\mathbb{C}^{\times} \times \mathbb{C}^{\times}$. The restriction maps are bijective except for

$$
4-T Q F T_{4}^{i n v} \rightarrow 4-T Q F T_{3}^{i n v}
$$

which is 6 -to- 1 .
Another fun fact:

$$
\Sigma M T S O(1) \simeq S^{0}
$$

