
CLASSIFYING INVERTIBLE TFT’S VIA COHOMOLOGY

TJ WARNER

1. Invertible TFT’s

Recall that last week Tim defined (∞, n)-categories which are certain n-fold simplicial spaces

C : (∆op)n → Top.

He defined the (∞, n)-category of d-bordisms d−Bordn, and defined TFT’s as symmetric monoidal
functors

E : d−Bordn → C
where C is some symmetric monoidal category.

Example 1.1. Recall the (∞, 1)-category of oriented 2-bordisms, denoted 2− bordSO1 . We showed
in teh first exercise session that any symmetric monoidal functor from there to V ect1 corresponds
to a commutative Frobenius algebra over C.

Exercise 1.2. What is V ect1 as a functor ∆op → Top?

Definition 1.3. An invertible TFT is a TFT which sends objects to ⊗-invertible objects and sends
morphisms to invertible morphisms.

We want to define a target category where the only possible targets are invertible.

Definition 1.4. An∞-Picard category is one in which all objects are ⊗-invertible and all morphisms
are invertible.

Define Pic(C) to be the maximal ∞-Picard subcategory.

In other words, an invertible TFT is a functor which factors through Pic(C). From now on, we
will denote Picard categories by E.

Exercise 1.5. Show that E is an ∞-Picard category if and only if the functor

(⊗, proj1) : E × E → E × E
is an equivalence.

We saw above that oriented 2-dimensional TFT’s correspond to commutative Frobenius algebras
over C. We want to know which of these are invertible. To figure this out, we observe that Pic(V ect1)
has a single object C and has morphisms C×. In other words, invertible oriented 2-TFT’s correspond
to 1-dimensional commutative Frobenius algebras.

[[picture of unit, pair of pants, upside down pair of pants, and counit from last week]]
The bordisms above correspond to the structure maps in a Frobenius algebra.

Exercise 1.6. An invertible oriented 2-dimensional TFT Z1 satisfies Z1(Σg) = µ1−g where µ ∈ C×
is the value

Everything we have discussed so far only relied on the 1-categorical structure.

Definition 1.7. Define a 2-category V ect2 with objects natural numbers, morphisms m×n matrices
of vector spaces, and 2-morphisms m× n matrices of linear maps. Composition of 1 -morphisms is
given by matrix multiplication where we use direct sum and tensor product.
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V ect2 is a categorical delooping of V ect1 in the sense that

Hom(1, 1) = V ect1.

Furthermore, we have Pic(V ect2) has a single object 1, morphisms 1-dimensional vector spaces, and
2-morphisms C×. But then the category with objects the 1-morphisms of Pic(V ect2) and morphisms
the 2-morphisms of Pic(V ect2) is just Pic(V ect1)!

More generally, weh ave the following definition.

Definition 1.8. If C is a symmetric monoidal (∞, n)-category, then define BC to be the (∞, n+ 1)-
category with one object ∗ and Hom(∗, ∗) = C.

Example 1.9. We have B(Pic(V ect1)) ' Pic(V ect2).

We now want to understand the diagram

Z2 : 2−BordSO2 V ect2

Pic(V ect2).

We have already specified where the objects and 1-morphisms are sent, so we just need to understand
2-morphisms. These can be determined by studying the following 2-morphism (see last week’s notes
for a bigger version):

We pick λ ∈ C× and set Z2(Σ) = λχ(Σ)−χ(Y ).
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Exercise 1.10. This defines a TFT with

Z2(Σ2) = λχ(Σg) = λ2−2g = (λ2)1−g.

Note that 2 − Bord1 sits inside of 2 − Bord2, but to make this a map in categories, we need to
take

B(2−Bord1)→ 2−Bord2

where the left-hand side sits inside as the morphisms of the empty manifold. Examining the variance
of the above map shows that we obtain a map

2− TQFT inv2 → 2− TQFT inv1 .

At the level of commutative Frobenius algebras, this sends the number λ to the number λ2. In other
words, specifying further information via higher categories allows us to distinguish between λ and
−λ.

We can inductively define higher categories V ectn with Pic(V ectn) having one thing in all levels,
except in the n-th level we have C×. We think of Pic(V ectn) as a model for K(C×, n).

2. Classifying invertible TFT’s

For our (∞, n)-categories, “morphisms being invertible” corresponds to “being equivalent to a
constant multisimplicial space.” This in turn is equivalent to being an (∞, 0)-category above level
n. Therefore we have the following key idea: Picard (∞, n)-categories model connective spectra.
In particular, objects being invertible gives the group-like condition on the 0-space, i.e. gives the
structure of a group-like space (i.e. infinite loop space) and therefore a connective spectrum.

For E Picard, if we have a map
d−Bordn → E,

we can pass to geometric realization

||d−Bordn|| → E.

Such maps then correspond to classes in

π0MapE∞(||d−Bordn||, E)

which in turn correspond to classes in the E-cohomology of the spectrum associated to ||d−Bordn||.
Note that above || − || is the fat realizaiton which can be thought of as taking sequential geometric
realization with respect to each simplicial direction.

Remark 2.1. Although d − Bordn is not grouplike, it becomes grouplike after taking geometric
realization. In other words, this realization forces disjoint union to become invertible.

3. Madsen-Tillman spectra

From now on, we want to understand d − Bord
SO(d)
n . We begin by defining Madsen-Tillman

spectra. Let γd be the tautological d-plane bundle and let γ⊥d = εp+1 − γd be its complement.
Consider the diagram

γ⊥d γd

Grd(Rp) Grd(Rp+1).i

We have i∗(γ⊥d ) ∼= γ⊥d ⊕ ε, so taking Thom spaces we obtain maps

Σ(Th(γ⊥d ))
∼=→ Th(i∗γ⊥d ).

This defines a spectrum MTSO(d) called the Madsen-Tillman spectrum defined by setting

(MTSO(d))p = Th(γp⊥d ).
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Remark 3.1. The ‘M’ above is the classical notation for Thom spectra, and the ‘T’ is to remind
us that there are tangential structures floating around.

These spectra are usually (−d)-connective.

Theorem 3.2 (Galatius-Madsen-Tillman-Weiss, Schommer-Pries). There is an equivalence of E∞-
spaces

||d−Bordn|| ' Ω∞−nMTSO(d) = Ω∞ΣnMTSO(d).

We now have the spectrum associated to ||d − Bordn||. We need to compute its homotopy or
cohomology.

Example 3.3. For k < d, we have a group isomorphism

πkΣdMTSO(d) ∼= Ωork .

We now want to compute cohomology with integer coefficients. Using the short exact sequence
of groups

Z→ C→ C×

we can recover the cohomology with coefficients in C× which relates us back to Pic(V ectn). We find
that

d− TQFT invn
∼= Hd(p≥d−nΣdMTSO(d);C×)

where p≥d−n is the Postnikov cover which throws away homotopy groups below degree d− n.
It is also interesting to contemplate the comparison maps

B(d−Bordn) d−Bordn+1

2− TQTF inv1 2− TQFT inv2

1− TQFT inv1

d−Bordn (d+ 1)Bordn+1

Example 3.4. • For d = 1, 3 and for any n ≤ d, there is a unique TQFT.
• For d = 2, there is a different TQFT for each element of C×.
• For d = 4, the different TQFT’s are indexed by pairs of complex numbers in C× × C×.

The restriction maps are bijective except for

4− TQFT inv4 → 4− TQFT inv3

which is 6-to-1.

Another fun fact:
ΣMTSO(1) ' S0.


