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Functor calculus is an attempt to, by analogy, treat functors as smooth

functions. The primary method is approximating a functor of interest by

simpler "polynomial" functors. Usually the approach is one of the following

three:

1. Homotopy Calculus concerns itself with functors of topological spaces

and spectra. A functor being linear means that it behaves like a ho-

mology theory. The canonical example is the identity functor on topo-

logical spaces.

2. Embedding Calculus (sometimes called Goodwillie-Weiss calculus)

starts with a manifold M and then concerns itself with functors F :
O(M)op → Top, and usually trying to understand F (M). Here a linear
functor is a functor that is uniquely de�ned by what it does to open

embedded discs. The canonical example is F = Emb( , N) for some

other manifold N .

3. Orthogonal Calculus (sometimes called Weiss calculus) Concerns

itself with functors F : V ect → Top, where V ect is the category of

�nite dimensional vector spaces with a positive de�nite inner product.

Here the canonical example is the functor V 7→ BO(V ).

In the mini-course I will give an introduction to homotopy calculus, as that

is what I am most knowledgeable about. Hopefully the other variations will

be covered by participant talks. This unfortunately also means that most of

the resources I can provide are in this direction.
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Some resources

Introductions

Good introductions to both homotopy and embedding calculus can be found

in the note set on the topic form Oberwolfach (www.mfo.de/document/0414/

OWR_2004_17.pdf), as well as the notes from the 2012 Talbot Workshop

(https://math.mit.edu/conferences/talbot/index.php?year=2012&sub=

talks).

A good introduction to orthogonal calculus can be found on Weiss' web-

site: https://ivv5hpp.uni-muenster.de/u/mweis_02/preprints/or.pdf

It is also worth reading Goodwillie's original Calculus I-III papers. Calc3

can be found here: hopf.math.purdue.edu/Goodwillie/calculus3.pdf.

Calc 1 and 2 are unfortunately hard to �nd, but I can email them if in-

terested.

The Derivatives of the Identity

The identity functor on pointed spaces is one of the most important func-

tors from the point of view of Homotopy Calculus. It is therefore of great

interest to give good description of its derivatives. This was �rst com-

pleted by Johnson (https://www.ams.org/journals/tran/1995-347-04/

S0002-9947-1995-1297532-6/). A di�erent description better in line with

the chain rule topic below was given by Ching (mching.people.amherst.

edu/Work/bar-constructions.pdf).

Chain rule

In homotopy calculus one question is how the theory interact with com-

position of functors. This was answered by Arone and Ching (https://

mching.people.amherst.edu/Work/chain-rule-spaces-final.pdf) rely-

ing on Koszul duality of operads. A more self contained answer that is

probably easier to give a talk on is Yeakel's work in the case of functors of

spaces (https://arxiv.org/abs/1706.06915).

Chromatic Homotopy theory

The Taylor tower of the identity on topological spaces is closely tied to chro-

matic homotopy theory. The fundamental computation by Arone and Ma-

howald can be found here http://hopf.math.purdue.edu/Arone-Mahowald/
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ArMahowald.pdf, and a survey of the topic by Kuhn here http://arxiv.

org/abs/math/0410342.

Higher Category Theory

Lurie has in Higher Algebra a section on Goodwillie calculus in the context

of quasi-categories (section 7). An interesting paper is Heuts' Goodwillie cal-

culus of categories (http://arxiv.org/abs/1510.03304). A di�erent paper

on model category theory is Pereira determining exactly what you need to

set up functor calculus (https://arxiv.org/abs/1301.2832).

K-theory and THH

One of the original motivation of Goodwillie was explaining the relationship

between Waldhausen K-theory of spaces and THH, this can be found in

Calc3, section 9.
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