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1. INTRODUCTION

I'll start with an overview, then tell you about homotopy functors.

Let F : C — D be a functor. We wish to understand F(X) for some preferred
object X € C. By “preferred,” we mean that there is a preferred way of constructing
objects in C.

Example 1.1. If C is the category of topological spaces, then the preferred objects
are CW complexes.

We also have a preferred way of computing in D.

Example 1.2. If D is also topological spaces, then we want to compute homology.
We then need cofiber sequences. Or, we want to compute homotopy groups, in which
case we need fiber sequences.

A very nice functor should take our preferred means of construction to our preferred
means of computation. We’ll see that most functors are not very nice, but we can
filter F' so that the layers of F' are very nice.

We will usually work with D = Top, or D = Sp. In these cases, there are special
names for functor calculus depending on C:

(1) If C = Top,, then the area of study is homotopy calculus.

(2) If C = O(M) is the category of open sets on a manifold, then this is embedding
calculus. Usually, we have F' = Emb(—, M).

(3) There are other cases we're interested in, but these are the ones we will focus
on here.

2. HOMOTOPY CALCULUS

Suppose we have F' : Top, — Top.. Our goal is to compute 7, F(X). We make the
following assumptions on F:

Definition 2.1. (1) We say that F'is homotopical if X ~ Y implies that F'(X) ~
F(Y).
(2) We say that F' is pointed if F' ~ x implies that F(X) ~ *. Sometimes we will
require F'(X) = * to make things easier.
(3) We say that F is finitary or continuous if for any CW complex X, we have

F(X) ~ colimucx F(A)

where the colimit is taken over finite CW complexes A C X.
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Remark 2.2. The analog of “pointed” in classical calculus is that f(0) = 0. Just
as in classical calculus and Taylor series, one can work out homotopy calculus with-
out assuming pointedness. However, the assumption will make things cleaner in the
sequel.

2.1. Linear functors.

Example 2.3. Let’s take an easy example. Let X be a CW complex. Let F' =
Q*(HZ N —), so m . F(X) = H.(X). This is finitary since H is a homology theory.
Filter X by its CW decomposition

XD"'DX[n]D"'DX[O].

Applying this functor to the filtration quotients gives a spectral sequence (the Atiyah-
Hirzebruch spectral sequence)

Ei= @ mFS)= P H(S) = H(X).

cells of X cells of X
This is also just the cellualr chain complex.

We can generalize this example as follows.
Example 2.4. Suppose that X is a space equipped with a tower of Serre fbrations
X—)---—)Xg—)Xg_lé"'—)Xo

with fibers Y;. Let F' = id. Then we obtain a spectral sequences

HW*Yg = m.X.
¢

We could apply this to a Postnikov tower for X, but this gives a fairly dumb spectral
sequence since we input 7, X to compute 7w, X. In general, it’s rare to be handed X
along with a tower of fibrations as above.

Definition 2.5. We say that F' is linear or 1-excisive if it takes homotopy pushouts
to homotopy pullbacks.

Remark 2.6. This definition is motivated by how we build CW complexes. We have
homotopy pushouts

\ 5o xli-1]
\/ D —— X
If F' is linear, then we have a homotopy pullback
F(V S™) —— F(x=1)
F(\ D) —— F(X).
The bottom-left is a point (since F' is pointed) and the top-left is a product of F(S"1).
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The remark implies the following.

Proposition 2.7. Suppose that F is linear and X is a CW complex. Then there is
a spectral sequence

I[ ~F)=nFrX).

cells of X

This spectral sequence does not always converge, but with sufficient connectivity
and finiteness conditions it does converge.

Example 2.8. We've seen F' = Q*HZ N — above. We can generalize this by taking
F = Q>(C N —) where C' is any spectrum. In fact, these are the only examples! This
follows from Brown representability and unwinding the definition of linearity; we will
work this out in detail later.

Assume that F' is linear. We can apply F' to the pushout
X —CX

CX — XX
to obtain a homotopy pullback

F(X) — x
x —— F(XX)
which implies that we have an equivalence
F(X) = QF(2X).

[terating this process, we see that if F' is linear, then F'(X) is an infinite loop space!
This justifies the 2°° in the example above.

Let £ be the category of linear functors from Top, to Top,. To any object of L,
we can attach a spectrum to obtain a functor

L% sp
F'—)&lF

where
(O F), = F(S™).
The structure maps were described above, and we see that in fact 0y F is an -
spectrum.
We can go the other way by setting

Sp— L,
C— Q°(CA-).

Theorem 2.9. This gives an equivalence of categories between L and Sp.
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Remark 2.10. We will not give the proof in detail since we don’t want to discuss the
model structure on L.

Why should we believe this? If F is linear, then F' ~ Q*(0;F A —). Then the
spectral sequence

[[7F(s) = nF(X)
cells

strongly suggests that the theorem is true.

2.2. Not linear functors? We can now study the composite
Py : Fun(Top., Top,) o Sp— L
and the suspension diagram from before gives a map (after resolving point-set issues)
F(X)— QF(XX).
If F' is not linear, this may not be an equivalence. In general, we have
P F ~ Q%O F AN —).

This is the first polynomial approximation to F'. We will discuss the generalization of
this next week.

2.3. Connectivity issues.

Definition 2.11. A functor F is F(c, k) if given any diagram

X — X5

L

X2 E— X12

where k; > k and X — Xj is k;-connected, then the map from F'(X) to the homotopy
limit of
F(Xy)

|

F(Xg) — F(Xlg)

is (k1 + k2 — ¢)-connected.
If Fis E(c, k) for some ¢ and s, we say that F' is stably linear.

Example 2.12. If F is linear, then F satisfies E(—o0, —1).

Example 2.13. If F is the identity, then F' satisfies F(1, k) for any x. This is just
a restatement of the Blakers-Massey Theorem.
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Definition 2.14. Let T7(F)(X) be the homotopy limit of
F(CX)

F(CX) — F(XllX)
Note that T7(F)(X) ~ QF(XX).
Proposition 2.15. If F' is E(c,k), then T, F is E(c — 1,k — 1).
Proposition 2.16. If F' is stably linear, then

colim(F — Ty (F) — T*(F) — - --)

1s linear and agrees with PiF as defined above.

Remark 2.17. The (homotopy) colimit above is defined pointwise on CW complexes.
This is one place the finitary condition on F is necessary.

We’ll generalize this definition and proposition next week, as well.

Proposition 2.18. The map F' — P, F is initial (in the homotopy category of func-
tors) amongst linear functors under F. Equivalently, any map from F to a linear
functor factors through P F.

Proof. Let L be a linear functor and let /' — L be a map. Then consider

F— L

~ ~

~ ~

PlF E— P1 (L)
Everything in the right-hand column is equivalent to L, so we’re done. 0

Proposition 2.19. We have

Proof. We have Ty (id) ~ QX, and more generally 77" ~ Q">". The result follows by
letting n tend to infinite. 0

Corollary 2.20. The Hurewicz homomorphism always exists.

Example 2.21. We have 0;(id) ~ S.
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Proposition 2.22. Let K be a finite CW complex. Then
P Map(K,—) ~ Mapg, (XK, X*—).
In particular,
O Map(K,—) ~ DK
where D 1is the Spanier- Whitehead dual functor.



