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1. Introduction

I’ll start with an overview, then tell you about homotopy functors.
Let F : C → D be a functor. We wish to understand F (X) for some preferred

object X ∈ C. By “preferred,” we mean that there is a preferred way of constructing
objects in C.

Example 1.1. If C is the category of topological spaces, then the preferred objects
are CW complexes.

We also have a preferred way of computing in D.

Example 1.2. If D is also topological spaces, then we want to compute homology.
We then need cofiber sequences. Or, we want to compute homotopy groups, in which
case we need fiber sequences.

A very nice functor should take our preferred means of construction to our preferred
means of computation. We’ll see that most functors are not very nice, but we can
filter F so that the layers of F are very nice.

We will usually work with D = Top∗ or D = Sp. In these cases, there are special
names for functor calculus depending on C:

(1) If C = Top∗, then the area of study is homotopy calculus.
(2) If C = O(M) is the category of open sets on a manifold, then this is embedding

calculus. Usually, we have F = Emb(−,M).
(3) There are other cases we’re interested in, but these are the ones we will focus

on here.

2. Homotopy calculus

Suppose we have F : Top∗ → Top∗. Our goal is to compute π∗F (X). We make the
following assumptions on F :

Definition 2.1. (1) We say that F is homotopical if X ' Y implies that F (X) '
F (Y ).

(2) We say that F is pointed if F ' ∗ implies that F (X) ' ∗. Sometimes we will
require F (X) = ∗ to make things easier.

(3) We say that F is finitary or continuous if for any CW complex X, we have

F (X) ' colimA⊆X F (A)

where the colimit is taken over finite CW complexes A ⊆ X.
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Remark 2.2. The analog of “pointed” in classical calculus is that f(0) = 0. Just
as in classical calculus and Taylor series, one can work out homotopy calculus with-
out assuming pointedness. However, the assumption will make things cleaner in the
sequel.

2.1. Linear functors.

Example 2.3. Let’s take an easy example. Let X be a CW complex. Let F =
Ω∞(HZ ∧ −), so π∗F (X) = H̃∗(X). This is finitary since H is a homology theory.
Filter X by its CW decomposition

X ⊃ · · · ⊃ X [n] ⊃ · · · ⊃ X [0].

Applying this functor to the filtration quotients gives a spectral sequence (the Atiyah-
Hirzebruch spectral sequence)

E1 =
⊕

cells of X

π∗F (Si) ∼=
⊕

cells of X

H∗(S
i)⇒ H̃∗(X).

This is also just the cellualr chain complex.

We can generalize this example as follows.

Example 2.4. Suppose that X is a space equipped with a tower of Serre fbrations

X → · · · → X` → X`−1 → · · · → X0

with fibers Y`. Let F = id. Then we obtain a spectral sequences∏
`

π∗Y` ⇒ π∗X.

We could apply this to a Postnikov tower for X, but this gives a fairly dumb spectral
sequence since we input π∗X to compute π∗X. In general, it’s rare to be handed X
along with a tower of fibrations as above.

Definition 2.5. We say that F is linear or 1-excisive if it takes homotopy pushouts
to homotopy pullbacks.

Remark 2.6. This definition is motivated by how we build CW complexes. We have
homotopy pushouts ∨

Si−1 X [i−1]

∨
Di X [i].

If F is linear, then we have a homotopy pullback

F (
∨
Si−1) F (X [i−1])

F (
∨
Di) F (X [i]).

The bottom-left is a point (since F is pointed) and the top-left is a product of F (Si−1).
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The remark implies the following.

Proposition 2.7. Suppose that F is linear and X is a CW complex. Then there is
a spectral sequence ∏

cells of X

π∗F (Si)⇒ π∗F (X).

This spectral sequence does not always converge, but with sufficient connectivity
and finiteness conditions it does converge.

Example 2.8. We’ve seen F = Ω∞HZ ∧− above. We can generalize this by taking
F = Ω∞(C ∧−) where C is any spectrum. In fact, these are the only examples! This
follows from Brown representability and unwinding the definition of linearity; we will
work this out in detail later.

Assume that F is linear. We can apply F to the pushout

X CX

CX ΣX

to obtain a homotopy pullback

F (X) ∗

∗ F (ΣX)

which implies that we have an equivalence

F (X)
'→ ΩF (ΣX).

Iterating this process, we see that if F is linear, then F (X) is an infinite loop space!
This justifies the Ω∞ in the example above.

Let L be the category of linear functors from Top∗ to Top∗. To any object of L,
we can attach a spectrum to obtain a functor

L ∂1→ Sp,

F 7→ ∂1F

where
(∂1F )n = F (Sn).

The structure maps were described above, and we see that in fact ∂1F is an Ω-
spectrum.

We can go the other way by setting

Sp→ L,
C 7→ Ω∞(C ∧ −).

Theorem 2.9. This gives an equivalence of categories between L and Sp.
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Remark 2.10. We will not give the proof in detail since we don’t want to discuss the
model structure on L.

Why should we believe this? If F is linear, then F ' Ω∞(∂1F ∧ −). Then the
spectral sequence ∏

cells

π∗F (Si)⇒ π∗F (X)

strongly suggests that the theorem is true.

2.2. Not linear functors? We can now study the composite

P1 : Fun(Top∗, T op∗)
∂1→ Sp→ L

and the suspension diagram from before gives a map (after resolving point-set issues)

F (X)→ ΩF (ΣX).

If F is not linear, this may not be an equivalence. In general, we have

P1F ' Ω∞(∂1F ∧ −).

This is the first polynomial approximation to F . We will discuss the generalization of
this next week.

2.3. Connectivity issues.

Definition 2.11. A functor F is E(c, κ) if given any diagram

X X1

X2 X12

where ki ≥ κ and X → Xi is ki-connected, then the map from F (X) to the homotopy
limit of

F (X1)

F (X2) F (X12)

is (k1 + k2 − c)-connected.
If F is E(c, κ) for some c and κ, we say that F is stably linear.

Example 2.12. If F is linear, then F satisfies E(−∞,−1).

Example 2.13. If F is the identity, then F satisfies E(1, κ) for any κ. This is just
a restatement of the Blakers-Massey Theorem.
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Definition 2.14. Let T1(F )(X) be the homotopy limit of

F (CX)

F (CX) F (ΣX).

Note that T1(F )(X) ' ΩF (ΣX).

Proposition 2.15. If F is E(c, κ), then T, F is E(c− 1, κ− 1).

Proposition 2.16. If F is stably linear, then

colim(F → T1(F )→ T ◦21 (F )→ · · · )

is linear and agrees with P1F as defined above.

Remark 2.17. The (homotopy) colimit above is defined pointwise on CW complexes.
This is one place the finitary condition on F is necessary.

We’ll generalize this definition and proposition next week, as well.

Proposition 2.18. The map F → P1F is initial (in the homotopy category of func-
tors) amongst linear functors under F . Equivalently, any map from F to a linear
functor factors through P1F .

Proof. Let L be a linear functor and let F → L be a map. Then consider

F L

T1(F ) T1(L)

...
...

P1F P1(L).

Everything in the right-hand column is equivalent to L, so we’re done. �

Proposition 2.19. We have

P1(id) ' Ω∞Σ∞.

Proof. We have T1(id) ' ΩΣ, and more generally T ◦n1 ' ΩnΣn. The result follows by
letting n tend to infinite. �

Corollary 2.20. The Hurewicz homomorphism always exists.

Example 2.21. We have ∂1(id) ' S.
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Proposition 2.22. Let K be a finite CW complex. Then

P1Map(K,−) 'MapSp(Σ
∞K,Σ∞−).

In particular,
∂1Map(K,−) ' DK

where D is the Spanier-Whitehead dual functor.


